Boosting the Boron Dopant Level in Monolayer Doping by Carboranes

Boosting the Boron Dopant Level in Monolayer Doping by Carboranes

Scientific Highlights Oxides for new-generation electronics 25 January 2016 5898 hits jags

am 2015 089524 0007

Liang YeArántzazu González-CampoRosario NúñezMichel P. de JongTibor Kudernac*Wilfred G. van der Wiel, and Jurriaan Huskens*
ACS Appl. Mater. Interfaces, 2015, 7 (49), pp 27357–27361
DOI: 10.1021/acsami.5b08952

Monolayer doping (MLD) presents an alternative method to achieve silicon doping without causing crystal damage, and it has the capability of ultrashallow doping and the doping of nonplanar surfaces. MLD utilizes dopant-containing alkene molecules that form a monolayer on the silicon surface using the well-established hydrosilylation process. Here, we demonstrate that MLD can be extended to high doping levels by designing alkenes with a high content of dopant atoms. Concretely, carborane derivatives, which have 10 B atoms per molecule, were functionalized with an alkene group. MLD using a monolayer of such a derivative yielded up to ten times higher doping levels, as measured by X-ray photoelectron spectroscopy and dynamic secondary mass spectroscopy, compared to an alkene with a single B atom. Sheet resistance measurements showed comparably increased conductivities of the Si substrates. Thermal budget analyses indicate that the doping level can be further optimized by changing the annealing conditions.

See more posts on ICMAB related to: Oxides for new-generation electronics

Related Topics: Oxides for new-generation electronics

Also on ICMAB...


Your experience on this site will be improved by allowing cookies Cookie Settings