• SCIENTIFIC HIGHLIGHTS

Electrochemical Tuning of Metal Insulator Transition and Nonvolatile Resistive Switching in Superconducting Films

Anna Palau*,Alejandro Fernandez-RodriguezJuan Carlos Gonzalez-RosilloXavier GranadosMariona CollBernat BozzoRafael Ortega-HernandezJordi SuñéNarcís MestresXavier Obradors, and Teresa PuigACS Appl. Mater. Interfaces, 2018, 10 (36), pp 30522–30531.

DOI: 10.1021/acsami.8b08042

Modulation of carrier concentration in strongly correlated oxides offers the unique opportunity to induce different phases in the same material, which dramatically change their physical properties, providing novel concepts in oxide electronic devices with engineered functionalities. This work reports on the electric manipulation of the superconducting to insulator phase transition in YBa2Cu3O7−δ thin films by electrochemical oxygen doping. Both normal state resistance and the superconducting critical temperature can be reversibly manipulated in confined active volumes of the film by gate-tunable oxygen diffusion. Vertical and lateral oxygen mobility may be finely modulated, at the micro- and nano-scale, by tuning the applied bias voltage and operating temperature thus providing the basis for the design of homogeneous and flexible transistor-like devices with loss-less superconducting drain–source channels. We analyze the experimental results in light of a theoretical model, which incorporates thermally activated and electrically driven volume oxygen diffusion.

 

See more posts on ICMAB related to: Materials for energy and enviroment

Related Topics: Materials for energy and enviroment

Also on ICMAB...

Search

Your experience on this site will be improved by allowing cookies Cookie Settings