logo icmab ochoa 02 01 logo icmab ochoa 02 01
  • NEWS

Excimers from Stable and Persistent Supramolecular Radical-Pairs in Red/NIR-Emitting Organic Nanoparticles and Polymeric

D. Blasi, D. M. Nikolaidou, F.Terenziani,* I. Ratera,* J. Veciana. Phys. Chem. Chem. Phys., 2017,19, 9313-9319. DOI: 10.1039/C7CP00623C


In this work, the luminescence properties of new materials based on open-shell molecular systems are studied. In particular, we prepared polymeric films and organic nanoparticles (ONPs) doped with triphenylmethyl radical molecules. ONPs exhibit uniform size distribution, spherical morphology and high colloidal stability. The emission spectrum of low doped ONP suspensions and low-doped films is very similar to the emission spectrum of TTM in solution, while the luminescence lifetime and the luminescence quantum yield (LQY) are highly increased. Increasing the radical doping leads to a progressive decrease of the LQY and the appearance of a new broad excimeric band at longer wavelengths, both for ONPs and films. Thus, not only the luminescence properties were improved, but also the formation of excimers from stable and persistent supramolecular radical-pairs was observed for the first time. The good stability and luminescence properties with emission in the biological window in the red-NIR region (650-800 nm), together with the open-shell nature of the emitter, make these free-radical excimer-forming materials promising candidates for optoelectronics and bioimaging applications.

 

 

 

See more posts on ICMAB related to: Materials for information science and electronics
See more posts on ICMAB related to: D. Blasi , D. M. Nikolaidou , F.Terenziani , I. Ratera , J. Veciana

Related Topics: Materials for information science and electronics

Also on ICMAB...

Search