Functional electronic inversion layers at ferroelectric domain walls

Functional electronic inversion layers at ferroelectric domain walls

Scientific Highlights Oxides for new-generation electronics 27 March 2017 3077 hits jags

J. A. MundyJ. SchaabY. KumagaiA. CanoM. StengelI. P. KrugD. M. GottlobH. DoğanayM. E. HoltzR. HeldZ. YanE. BourretC. M. SchneiderD. G. SchlomD. A. MullerR. RameshN. A. Spaldin & D. MeierNature Materials doi:10.1038/nmat4878

Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation—and eventual activation—of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

See more posts on ICMAB related to: Oxides for new-generation electronics

Related Topics: Oxides for new-generation electronics

Also on ICMAB...


Your experience on this site will be improved by allowing cookies Cookie Settings