Menu
Director's Message and Videos

Director's Message and Videos

Welcome to our web site. Thr...

Take a look

Take a look

Scientific and Technical Ser...

Personnel

Personnel

  Personnel List

Jobs

Jobs

Available Positions

Prev Next
Reversible Control of Crystalline Rotors by Squeezing Their Hydrogen Bond Cloud Across a Halogen Bond-Mediated Phase Transition

Reversible Control of Crystalline Rotors by Squeezing Their Hydrogen Bond Cloud Across a Halogen Bond-Mediated Phase Transition

Cyprien Lemouchi, Hiroshi M. Yamamoto, Reizo Kato, Sergey Simonov, Leokadiya Zorina,Antonio Rodríguez-Fortea, Enric Canadell, Pawel Wzietek, Konstantinos Iliopoulos, Denis Gindre, Michael Chrysos, and Patrick Batail*.      Cryst. Growth Des., 2014, 14 (7), pp 3375–3383

Dynamics of the Field-Induced Formation of Hexagonal Zipped-Chain Superstructures in Magnetic Colloids

  • Hits: 13500

27-05-2011_12-38-39

D. Heinrich, A. R. Goñi, A. Smessaert, S. H. L. Klapp, L. M. C. Cerioni, T. M. Osán, D. J. Pusiol, and C. Thomsen

PRL 106, 208301 (2011)

DOI:10.1103/PhysRevLett.106.208301
PACS:82.70.Dd, 68.08.De, 75.50.Mm, 76.60.-k

Combining nuclear magnetic resonance and molecular dynamics simulations, we unravel the long-time dynamics of a paradigmatic colloid with strong dipole-dipole interactions. In a homogeneous magnetic field, ionic ferrofluids exhibit a stepwise association process from ensembles of monomers over stringlike chains to bundles of hexagonal zipped-chain patches. We demonstrate that attractive van der Waals interactions due to charge-density fluctuations in the magnetic particles play the key role for the dynamical stabilization of the hexagonal superstructures against thermal dissociation. Our results give insight into the dynamics of self-organization in systems dominated by dipolar interactions.

 

More

Prev Next

Search

Organisation

Sc.&Technical Services

Scientific Highlights

Links of interest

pie2014

sts banner

logoeugris    mecgris    csicgris
bncbgris          uabgris        uabceigris      pruabgris