Nanostructured Back Reflectors for Efficient Colloidal Quantum‐Dot Infrared Optoelectronics

Se‐Woong BaekPau MoletMin‐Jae ChoiMargherita BiondiOlivier OuelletteJames FanSjoerd HooglandF. Pelayo García de Arquer,  Agustín Mihi,  Edward H. SargentAdv. Mater. 2019, 1901745.

Colloidal quantum dots (CQDs) can be used to extend the response of solar cells, enabling the utilization of solar power that lies to the red of the bandgap of c‐Si and perovskites. To achieve largely complete absorption of infrared (IR) photons in CQD solids requires thicknesses on the micrometer range; however, this exceeds the typical diffusion lengths (≈300 nm) of photoexcited charges in these materials. Nanostructured metal back electrodes that grant the cell efficient IR light trapping in thin active layers with no deterioration of the electrical properties are demonstrated. Specifically, a new hole‐transport layer (HTL) is developed and directly nanostructured. Firstly, a material set to replace conventional rigid HTLs in CQD devices is developed with a moldable HTL that combines the mechanical and chemical requisites for nanoimprint lithography with the optoelectronic properties necessary to retain efficient charge extraction through an optically thick layer. The new HTL is nanostructured in a 2D lattice and conformally coated with MoO3/Ag. The photonic structure in the back electrode provides a record photoelectric conversion efficiency of 86%, beyond the Si bandgap, and a 22% higher IR power conversion efficiency compared to the best previous reports.

Nanostructured Back Reflectors for Efficient Colloidal Quantum‐Dot Infrared Optoelectronics



See more posts on ICMAB related to: Materials for energy and enviroment

Related Topics: Materials for energy and enviroment

Also on ICMAB...


Your experience on this site will be improved by allowing cookies Cookie Settings