Reactive laser synthesis of nitrogen-doped hybrid graphene-based electrodes for energy storage

Reactive laser synthesis of nitrogen-doped hybrid graphene-based electrodes for energy storage

Scientific Highlights Sustainable energy conversion & storage systems 25 September 2018 2036 hits jags

Ángel Pérez del Pino,* Andreu Martínez Villarroya, Alex Chuquitarqui, Constantin Logofatu, Dino Tonti and Enikö György. J. Mater. Chem. A, 2018,6, 16074-16086 


A versatile method based on the matrix assisted pulsed laser evaporation (MAPLE) technique was used for the fabrication of graphene-based electrodes for application in supercapacitors. The simultaneous deposition and chemical transformation of graphene oxide (GO) and GO–NiO nanoparticles was attained by including nitrogen-containing chemically reactive compounds (ammonia, urea and melamine) in aqueous MAPLE targets. Morphological analyses reveal the formation of hundreds of nanometres to tens of micrometres thick porous films on both plastic and metallic flexible substrates. Structural and compositional studies, carried out by transmission electron microscopy, and Raman and X-ray photoelectron spectroscopies, disclose significant deoxidation and nitrogen doping of the GO material. The electrodes reveal remarkable electrochemical performance, showing a maximum volumetric capacitance of 350 F cm−3 (9 mF cm−2 areal capacitance) in aqueous electrolyte. Symmetric supercapacitors fabricated with these electrodes reveal excellent long-term stability at high specific intensities. From the obtained results, it can be asserted that the reactive inverse MAPLE method stands out as a promising technology not only for the adaptable fabrication of flexible graphene-based composite electrodes but also for a wide variety of advanced functional materials for diverse applications.


See more posts on ICMAB related to: Sustainable energy conversion & storage systems

Related Topics: Sustainable energy conversion & storage systems

Also on ICMAB...


Your experience on this site will be improved by allowing cookies Cookie Settings