Thin Films Laboratory

  • About

    The Service of Thin Films has been created to offer to the researchers the capability of fabrication of complex oxides thin films and heterostructures combining oxides and metals.

    The deposition techniques are pulsed laser deposition (PLD) for oxides and sputtering for metals. Currently there are two PLD set-ups installed, and in short time both systems will be connected to a chamber with several sputtering units. PLD is a physical vapour deposition technique that uses ultraviolet laser radiation to vaporize material that is transferred to the substrate. The plot in Figure 1 is a sketch illustrating a PLD set-up.

    The pulsed beam of an ultraviolet laser (usually an excimer) is focused on a ceramic target placed in a vacuum chamber. The combination of pulsed irradiation, high photon energy, and high energy density can cause the ablation of the material. Ablation refers to the etching and emission of material under conditions totally out of the equilibrium. The plasma created expands fast along the perpendicular direction of the target (see the photography in Figure 2). A substrate is placed front the target, and inert or reactive gases are usually introduced during the deposition process.


    The technique is very suitable for oxides, and compared with other techniques is particularly useful to obtain films with complex stoichiometry and to grow epitaxial films and heterostructures. Moreover, PLD is highly versatile to optimize the deposition conditions of new materials, and the films can be grown in relatively fast processes. These characteristics favour the use of the technique by research groups having interest in different materials.


  • Publications

    Pulsed Laser Deposition of Thin Films”, ed. By D.B. Chrisey and G.K. Hubler, Wiley,1994< Pulsed Laser Deposition of Thin Films: Application-led Growth of Functional Materials”, ed. by R. Eason, Wiley, 2007 H.M. Christen and G. Eres, Recent Advances in Pulsed-Laser Deposition of Complex Oxides, J. Phys.: Condens. Matter 20, 264005 (2008)

    Selected publications (ICMAB):

    D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino, E. Magnano, F. Sánchez, J. Fontcuberta, Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films, Nature Communications 3, 1189 (2012) C. Ocal, R. Bachelet, L. Garzón, M. Stengel, F. Sánchez, J. Fontcuberta, Nanoscale laterally-modulated properties of oxide ultrathin films by substrate termination replica through layer-by-layer growth, Chemistry of Materials 24, 4177 (2012) M. Coll, J. Gazquez, A. Palau, M. Varela, X. Obradors, T. Puig, Low Temperature Epitaxial Oxide Ultrathin Films and Nanostructures by Atomic Layer Deposition, Chemistry of Materials 24 3732 (2012) P. de Coux, R. Bachelet, C. Gatel, B. Warot-Fonrose, J. Fontcuberta, F. Sánchez, Mechanisms of epitaxy and defects at the interface in ultrathin YSZ films on Si(001), CrystEngComm (Communication) 14, 7851 (2012) G. Herranz, F. Sánchez, N. Dix, M. Scigaj, J. Fontcuberta, High mobility conduction at (110) and (111) LaAlO3/SrTiO3 interfaces, Scientific Reports 2, 758 (2012) M. Foerster, R. Bachelet, V. Laukhin, J. Fontcuberta, G. Herranz, F. Sánchez, Laterally-confined two-dimensional electron gases in self-patterned LaAlO3/SrTiO3 interfaces, Applied Physics Letters 100, 231607 (2012) F. Sánchez, R. Bachelet, P. de Coux, B. Warot-Fonrose, V. Skumryev, L. Tarnawska, P. Zaumseil, T. Schroeder, J. Fontcuberta, Domain matching epitaxy of ferrimagnetic CoFe2O4 thin films on Sc2O3/Si(111), Applied Physics Letters 99, 211910 (2011) R. Bachelet, P. de Coux, B. Warot-Fonrose, V. Skumryev, J. Fontcuberta, F. Sánchez, CoFe2O4/buffer layer ultrathin heterostructures on Si(001), Journal of Applied Physics 110, 086102 (RC) (2011)R. Bachelet, C. Ocal, L. Garzón, J. Fontcuberta, F. Sánchez, Conducted growth of SrRuO3 nanodot arrays on self-ordered La0.18Sr0.82Al0.59Ta0.41O3(001) surfaces, Applied Physics Letters 99, 051914 (2011) R. Bachelet, D. Pesquera, G. Herranz, F. Sánchez, J. Fontcuberta, Persistent two-dimensional growth of (110) manganite films, Applied Physics Letters 97, 121904 (2010)
  • Request Service


    Dr. Florencio Sánchez 
    Scientific Manager

    Raúl Solanas
    Tel. 935801853 (ext. 323-262)
  • Staff

    thinfilms solanas

    Dr. Florencio Sánchez
    Scientific supervisor
    tel. 93 580 18 53 (ext. 327)

    Raúl Solanas
    Tel. 935801853 (ext. 323-262)
  • User's Commission

    President: Prof. Xavier Obradors (Director of ICMAB)

    Scientific Manager: Dr. Florencio Sánchez


    Prof. Josep Fontcuberta
    Prof. Josep Lluis García
    Prof. Benjamín Martínez
    Prof. Carmen Ocal (Vocal)
    Prof. Teresa Puig (Vocal)
    Dr. Xavier Torrelles (Vocal)



Your experience on this site will be improved by allowing cookies Cookie Settings