Trapping and electrical characterization of single core/shell iron-based nanoparticles in self-aligned nanogaps

Trapping and electrical characterization of single core/shell iron-based nanoparticles in self-aligned nanogaps

Scientific Highlights Materials for information science and electronics 29 October 2019 251 hits icmabcsic

Jacqueline Labra-Muñoz,Zorica KonstantinovićLluis Balcells, Alberto Pomar, Herre S. J. van der Zant, and Diana Dulić. Appl. Phys. Lett. 115, 063104 (2019); 

https://doi.org/10.1063/1.5094352

We report on the fabrication and measurements of platinum-self-aligned nanogap devices containing cubed iron (core)/iron oxide (shell) nanoparticles (NPs) with two average different sizes (13 and 17 nm). The nanoparticles are deposited by means of a cluster gun technique. Their trapping across the nanogap is demonstrated by comparing the current vs voltage characteristics (I-Vs) before and after the deposition. At low temperature, the I-Vs can be well fitted to the Korotkov and Nazarov Coulomb blockade model, which captures the coexistence of single-electron tunneling and tunnel barrier suppression upon a bias voltage increase. The measurements thus show that Coulomb-blockaded devices can be made with a nanoparticle cluster source, which extends the existing possibilities to fabricate such devices to those in which it is very challenging to reduce the usual NP agglomeration given by a solution method.

Trapping and electrical characterization of single core/shell iron-based nanoparticles in self-aligned nanogaps

See more posts on ICMAB related to: Materials for information science and electronics

Related Topics: Materials for information science and electronics

Also on ICMAB...

Search

Your experience on this site will be improved by allowing cookies Cookie Settings