SCIENTIFIC HIGHLIGHTS

A molecular-scale portrait of domain imaging in organic surfaces
15 May 2017
Ana Perez-Rodriguez, Esther Barrena*, Antón Fernández, Enrico Gnecco* and Carmen Ocal. Nanoscale, 2017, 9, 5589-5596. DOI: 10.1039/C7NR01116D

Progress in the general understanding of structure–property relationships in organic devices requires experimental tools capable of imaging structural details, such as molecular packing or domain attributes, on ultra-thin films. An operation mode of scanning force microscopy, related to friction force microscopy (FFM) and known as transverse shear microscopy (TSM), has demonstrated the ability to reveal the orientation of crystalline domains in organic surfaces with nanometer resolution. In spite of these promising results, numerous questions remain about the physical origin of the TSM domain imaging mechanism. Taking as a benchmark a PTCDI-C8 sub-monolayer, we demonstrate experimentally and theoretically that such a mechanism is the same atomic scale stick-slip ruling FFM leading to the angular dependence of both signals. Lattice-resolved images acquired on top of differently oriented PTCDI-C8 molecular domains are crucial to permit azimuthal sampling, without the need for sample rotation. The simulations reveal that, though the surface crystallography is the direct cause of the FFM and TSM signals, the manifestation of anisotropy will largely depend on the amplitude of the surface potential corrugation as well as on the temperature. This work provides a novel nanoscale strategy for the quantitative analysis of organic thin films based on their nanotribological response.
Hits: 3364
Oxides for new-generation electronics

A molecular-scale portrait of domain imaging in organic surfaces



Also at ICMAB

  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    Information
    09 April 2021 101 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    Information
    06 April 2021 200 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.
  • Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System

    Information
    30 March 2021 171 hit(s) Oxides
    The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material.
  • Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

    Information
    26 March 2021 198 hit(s) Oxides
    Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared.
  • Metallic Diluted Dimerization in VO2 Tweeds

    Information
    19 March 2021 217 hit(s) Oxides
    Though first order transitions are thought to be abrupt, materials find cunning ways to smooth the jump. Here we show that VO2 chooses making beautiful tapestries at the atomic scale. To see how, and how they affect its intriguing metal-insulator transition, continue reading:

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.