SCIENTIFIC HIGHLIGHTS

Beating the Thermal Conductivity Alloy Limit Using Long-Period Compositionally Graded Si1–xGex Superlattices
08 January 2021
Superlattices with scattering mechanisms at multiple length scales efficiently scatter phonons at all relevant wavelengths and provide a convenient route to reduce thermal transport. Here, we show, both experimentally and by atomistic simulations, that SiGe superlattices with well-established compositional gradients and a sufficient number of interfaces exhibit extremely low thermal conductivity. 
Our results reveal that the thermal conductivity of long-period (30–50 nm) superlattices with thicknesses below 200 nm is still thickness-dependent and higher than that of the corresponding alloy thin film. Increasing the number of periods up to 16 has a strong impact on heat propagation, leading to thermal conductivity values below the thin-film alloy limit. Lattice dynamics calculations confirm that the reduced thermal conductivity stems from the simultaneous effects of mass scattering, graded interface scattering, and coherent interference from the lattice periodicity. This study provides a significant step forward in understanding the role of compositional gradients in heat transport across nanostructures. The strategy of employing long-period graded superlattices with extremely low thermal conductivities has great potential for micro- and nano-thermoelectric generation and cooling of Si-based devices.
Hits: 930
Sustainable energy conversion & storage systems

Beating the Thermal Conductivity Alloy Limit Using Long-Period Compositionally Graded Si1–xGex Superlattices


P. Ferrando-Villalba, Shunda Chen, A. F. Lopeandía, F. X. Alvarez, M. I. Alonso, M. Garriga, J. Santiso, G. Garcia, A. R. Goñi, D. Donadio*, and J. Rodríguez-Viejo*

J. Phys. Chem. C 2020, 124, 36, 19864–19872
Publication Date:August 11, 2020
https://doi.org/10.1021/acs.jpcc.0c06410

Also at ICMAB

  • High-throughput screening of blade coated polymer:polymer solar cells: solvent determines achievable performance

    Information
    28 January 2022 115 hit(s) Energy
    Optimization of a new system for organic solar cells is a multiparametric analysis problem which requires substantial efforts in terms of time and resources. The strong microstructure dependent performance of polymer:olymer cells makes them particularly difficult to optimize, or to translate previous knowledge from spin coating into more scalable techniques.
  • Interfaces and Interphases in Ca and Mg Batteries

    Information
    14 January 2022 201 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    Information
    27 December 2021 287 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    Information
    14 December 2021 360 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.