SCIENTIFIC HIGHLIGHTS

Coated Conductor technology for the beamscreen chamber of future high energy circular colliders
09 August 2019
Teresa Puig, Patrick Krkotic, Artur Romanov, Joan O'Callaghan, Danilo Andrea Zanin, Holger Neupert, Pedro Costa Pinto, Pierre Demolon, Ângelo Rafael Granadeiro Costa, Mauro Taborelli, Francis Perez, Montse Pont, Joffre Gutierrez and Sergio Calatroni. Superconductor Science and Technology

The surface resistance of state-of-the-art REBa2Cu3O7-x coated conductors has been measured at 8 GHz versus temperature and magnetic field. We show that the surface resistance of REBa2Cu3O7-x strongly depends on the microstructure of the material. We have compared our results to those determined by the rigid fluxon model. The model gives a very good qualitative description of our data, opening the door to unravel the effect of material microstructure and vortex interactions on the surface resistance of high temperature superconductors. Moreover, it provides a powerful tool to design the best coated conductor architecture that minimizes the in-field surface resistance. We have found that the surface resistance of REBa2Cu3O7-x at 50 K and up to 9 T is lower than that of copper. This fact poses coated conductors as strong candidate to substitute copper as a beam-screen coating in CERN's future circular collider. To this end we have also analysed the secondary electron yield of REBa2Cu3O7-x and found a compatible coating made of sputtered Ti and amorphous Carbon that decreases the secondary electron yield close to unity, a mandatory requirement for the beam screen chamber of a circular collider in order to prevent the electron-cloud phenomenon.

Coated Conductor technology for the beamscreen chamber of future high energy circular colliders

 

Hits: 1473
Superconducting materials for emerging technologies

Coated Conductor technology for the beamscreen chamber of future high energy circular colliders



Also at ICMAB

  • High Performance of Superconducting YBa2Cu3O7 Thick Films Prepared by Single-Deposition Inkjet Printing

    Information
    23 November 2021 170 hit(s) Superconductors
    Inkjet printing (IJP) is a very appealing cost-effective deposition technique to achieve large-area solution-derived functional films. For many applications, it is very challenging to increase the film thickness in order to achieve competitive performance, for instance, high critical currents in superconducting films. In this paper, the preparation of superconducting YBa2Cu3O7 thick films (∼1.1 μm) using a single deposition is reported. Specific rules for ink design, deposition protocols, and pyrolysis processes are provided.
  • Ultra-high critical current densities of superconducting YBa2Cu3O7-δ thin films in the overdoped state

    Information
    27 May 2021 625 hit(s) Superconductors
    The functional properties of cuprates are strongly determined by the doping state and carrier density. We present an oxygen doping study of YBa2Cu3O7-δ (YBCO) thin films from underdoped to overdoped state, correlating the measured charge carrier density, nHnH, the hole doping, p, and the critical current density, Jc. Our results show experimental demonstration of strong increase of Jc with nH, up to Quantum Critical Point (QCP), due to an increase of the superconducting condensation energy.
  • Combinatorial Screening of Cuprate Superconductors by Drop-On-Demand Inkjet Printing

    Information
    27 April 2021 626 hit(s) Superconductors
    Combinatorial and high-throughput experimentation (HTE) is achieving more relevance in material design, representing a turning point in the process of accelerated discovery, development, and optimization of materials based on data-driven approaches. The versatility of drop-on-demand inkjet printing (IJP) allows performing combinatorial studies through fabrication of compositionally graded materials with high spatial precision, here by mixing superconducting REBCO precursor solutions with different rare earth (RE) elements.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.