SCIENTIFIC HIGHLIGHTS

Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide
23 October 2020

Utilizing quantum effects in complex oxides, such as magnetism, multiferroicity and superconductivity, requires atomic-level control of the material’s structure and composition. In contrast, the continuous conductivity changes that enable artificial oxide-based synapses and multiconfigurational devices are driven by redox reactions and domain reconfigurations, which entail long-range ionic migration and changes in stoichiometry or structure.

Although both concepts hold great technological potential, combined applications seem difficult due to the mutually exclusive requirements. Here we demonstrate a route to overcome this limitation by controlling the conductivity in the functional oxide hexagonal Er(Mn,Ti)O3 by using conductive atomic force microscopy to generate electric-field induced anti-Frenkel defects, that is, charge-neutral interstitial–vacancy pairs.

These defects are generated with nanoscale spatial precision to locally enhance the electronic hopping conductivity by orders of magnitude without disturbing the ferroelectric order. We explain the non-volatile effects using density functional theory and discuss its universality, suggesting an alternative dimension to functional oxides and the development of multifunctional devices for next-generation nanotechnology.

Read the news post in our website "NextGen nanotechnology: changing conductivity with an Atomic Force Microscope with nanoscale precision"

Hits: 813
Oxides for new-generation electronics

Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide


Donald M. Evans, Theodor S. Holstad, Aleksander B. Mosberg, Didrik R. Småbråten, Per Erik Vullum, Anup L. Dadlani, Konstantin Shapovalov, Zewu Yan, Edith Bourret, David Gao, Jaakko Akola, Jan Torgersen, Antonius T. J. van Helvoort, Sverre M. Selbach & Dennis Meier.

Also at ICMAB


INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.