Skip to main content


14 February 2014

cm-2013-03064u 0010

Adrian Carretero-Genevrier*Judith Oro-SoleJaume GazquezCesar MagénLaura MirandaTeresa PuigXavier ObradorsEtienne FerainClement SanchezJuan Rodriguez-Carvajal, and Narcis Mestres*

Chem. Mater., 2014, 26 (2), pp 1019–1028
We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize. α-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr2+- or Ba2+-mediated heterogeneous catalysis in the air at 800 °C. These α-quartz thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Therefore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.
Hits: 7652
M4ELC Sustainable Electronics

Direct Monolithic Integration of Vertical Single Crystalline Octahedral Molecular Sieve Nanowires on Silicon