SCIENTIFIC HIGHLIGHTS

Exchange Coupling Inversion in a High-Spin Organic Triradical Molecule
08 April 2016

The magnetic properties of a nanoscale system are inextricably linked to its local environment. In adatoms on surfaces and inorganic layered structures, the exchange interactions result from the relative lattice positions, layer thicknesses, and other environmental parameters. Here, we report on a sample-dependent sign inversion of the magnetic exchange coupling between the three unpaired spins of an organic triradical molecule embedded in a three-terminal device. This ferro-to-antiferromagnetic transition is due to structural distortions and results in a high-to-low spin ground-state change in a molecule traditionally considered to be a robust high-spin quartet. Moreover, the flexibility of the molecule yields an in situ electric tunability of the exchange coupling via the gate electrode. These findings open a route to the controlled reversal of the magnetic states in organic molecule-based nanodevices by mechanical means, electrical gating, or chemical tailoring.

 

Hits: 5259
Oxides for new-generation electronics

Exchange Coupling Inversion in a High-Spin Organic Triradical Molecule



Also at ICMAB

  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    Information
    09 April 2021 100 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    Information
    06 April 2021 200 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.
  • Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System

    Information
    30 March 2021 171 hit(s) Oxides
    The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material.
  • Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

    Information
    26 March 2021 198 hit(s) Oxides
    Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared.
  • Metallic Diluted Dimerization in VO2 Tweeds

    Information
    19 March 2021 217 hit(s) Oxides
    Though first order transitions are thought to be abrupt, materials find cunning ways to smooth the jump. Here we show that VO2 chooses making beautiful tapestries at the atomic scale. To see how, and how they affect its intriguing metal-insulator transition, continue reading:

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.