Skip to main content

SCIENTIFIC HIGHLIGHTS

Excimers from Stable and Persistent Supramolecular Radical-Pairs in Red/NIR-Emitting Organic Nanoparticles and Polymeric
06 November 2017
D. Blasi, D. M. Nikolaidou, F.Terenziani,* I. Ratera,* J. Veciana. Phys. Chem. Chem. Phys., 2017,19, 9313-9319. DOI: 10.1039/C7CP00623C


In this work, the luminescence properties of new materials based on open-shell molecular systems are studied. In particular, we prepared polymeric films and organic nanoparticles (ONPs) doped with triphenylmethyl radical molecules. ONPs exhibit uniform size distribution, spherical morphology and high colloidal stability. The emission spectrum of low doped ONP suspensions and low-doped films is very similar to the emission spectrum of TTM in solution, while the luminescence lifetime and the luminescence quantum yield (LQY) are highly increased. Increasing the radical doping leads to a progressive decrease of the LQY and the appearance of a new broad excimeric band at longer wavelengths, both for ONPs and films. Thus, not only the luminescence properties were improved, but also the formation of excimers from stable and persistent supramolecular radical-pairs was observed for the first time. The good stability and luminescence properties with emission in the biological window in the red-NIR region (650-800 nm), together with the open-shell nature of the emitter, make these free-radical excimer-forming materials promising candidates for optoelectronics and bioimaging applications.

 

 

 

Hits: 4114
Oxides for new-generation electronics

Excimers from Stable and Persistent Supramolecular Radical-Pairs in Red/NIR-Emitting Organic Nanoparticles and Polymeric