Skip to main content

SCIENTIFIC HIGHLIGHTS

High‐Throughput Nanofabrication of Metasurfaces with Polarization‐Dependent Response
15 September 2020

Metal nanostructures offer exciting ways to manage light at the nanoscale exploited in fields such as imaging, sensing, energy conversion, and information processing. The optical response of the metallic architectures can be engineered to exhibit photonic properties that span from plasmon resonances to more complex phenomena such as negative refractive index, optical chirality, artificial magnetism, and more.

However, the latter optical properties are only observed in intricate architectures, which are highly demanding in terms of nanofabrication and hence less scalable and far away from device implementation. Here, a series of metasurfaces covering centimeter areas and operating in the visible spectrum are presented, which are produced from the combination of nanoimprinting lithography and oblique angle metal evaporation. The potential of this scalable approach is illustrated by easily fabricating metasurfaces engineered to exhibit artificial optical magnetism, tunable linear polarization dependent response, chirality with g‐factor of 0.2, and photoluminescence enhancement of 20 times over a 9 mm2 area.

High‐Throughput Nanofabrication of Metasurfaces with Polarization‐Dependent Response
Cristiano Matricardi, Juan Luis Garcia‐Pomar, Pau Molet, Luis Alberto Pérez, Maria Isabel Alonso, Mariano Campoy‐Quiles, Agustín Mihi. 
Adv. Optical Mater. 2020, 2000786.
DOI: 10.1002/adom.202000786

High‐Throughput Nanofabrication of Metasurfaces with Polarization‐Dependent Response

 
Hits: 1896
Sustainable energy conversion & storage systems

High‐Throughput Nanofabrication of Metasurfaces with Polarization‐Dependent Response