Skip to main content


19 May 2015


Riccardo Frisenda, Rocco Gaudenzi, Carlos Franco, Marta Mas-Torrent, Concepció Rovira, Jaume Veciana, Isaac Alcon, Stefan T. Bromley, Enrique Burzurí, Herre S. J. van der Zant. 
Nano Lett., 2015, 15 (5), pp 3109–3114

DOI: 10.1021/acs.nanolett.5b00155

It is shown that the paramagnetism of the polychlorotriphenylmethyl (PTM) radical molecule in the form of a Kondo anomaly is preserved in two- and three-terminal solid-state devices, regardless of mechanical and electrostatic changes. Indeed, reported evidences demonstrate that the Kondo anomaly is robust under electrodes displacement and changes of the electrostatic environment pointing to a localized orbital in the radical as the source of magnetism. Strong support to this picture is provided by DFT calculations and measurements of the corresponding non-radical species. These results pave the way towards the use of all-organic neutral radical molecules in spintronics devices and open the door to further investigations into Kondo physics.

Hits: 898971
Oxides for new-generation electronics

Kondo effect in a neutral and stable all organic radical single molecule break junction