Local electric-field control of multiferroic spin-spiral domains in TbMnO3
05 February 2021

Spin-spiral multiferroics exhibit a magnetoelectric coupling effects, leading to the formation of hybrid domains with inseparably entangled ferroelectric and antiferromagnetic order parameters. Due to this strong magnetoelectric coupling, conceptually advanced ways for controlling antiferromagnetism become possible and it has been reported that electric fields and laser pulses can reversibly switch the antiferromagnetic order.

This switching of antiferromagnetic spin textures is of great interest for the emergent field of antiferromagnetic spintronics. Established approaches, however, require either high voltages or intense laser fields and are currently limited to the micrometer length scale, which forfeits the technological merit. Here, we image and control hybrid multiferroic domains in the spin-spiral system TbMnO3 using low-temperature electrostatic force microscopy (EFM). First, we show that image generation in EFM happens via surface screening charges, which allows for probing the previously hidden magnetically induced ferroelectric order in TbMnO3 (PS = 6 × 10−4 C/m2). We then set the antiferromagnetic domain configuration by acting on the surface screening charges with the EFM probe tip. Our study enables detection of entangled ferroelectric and antiferromagnetic domains with high sensitivity. The spatial resolution is limited only by the physical size of the probe tip, introducing a pathway towards controlling antiferromagnetic order at the nanoscale and with low energy.

Hits: 348
Oxides for new-generation electronics

Local electric-field control of multiferroic spin-spiral domains in TbMnO3

Peggy Schoenherr, Sebastian Manz, Lukas Kuerten, Konstantin Shapovalov, Ayato Iyama, Tsuyoshi Kimura, Manfred Fiebig & Dennis Meier

npj Quantum Mater. 5, 86 (2020)

Also at ICMAB

  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    09 April 2021 108 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    06 April 2021 203 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.
  • Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System

    30 March 2021 173 hit(s) Oxides
    The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material.
  • Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

    26 March 2021 201 hit(s) Oxides
    Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared.
  • Metallic Diluted Dimerization in VO2 Tweeds

    19 March 2021 217 hit(s) Oxides
    Though first order transitions are thought to be abrupt, materials find cunning ways to smooth the jump. Here we show that VO2 chooses making beautiful tapestries at the atomic scale. To see how, and how they affect its intriguing metal-insulator transition, continue reading:

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.