Magnetic and electronic properties of the ferroelectric-photovoltaic ordered double perovskite  CaMnTi2O6  investigated by x-ray absorption spectroscopies
07 August 2018
Javier Herrero-Martín, Javier Ruiz-Fuertes, Thomas Bernert, Monika Koch-Müller, Eiken Haussühl, and José Luis García-Muñoz. Phys. Rev. B 97, 235129. 
The ferroelectric and magnetic phases of the double perovskite CaMnTi2O6 with A-site order have been investigated by soft x-ray absorption and magnetic circular dichroism. All spectra point to a very ionic state of divalent Mn and tetravalent Ti atoms. The effects of the crystal field produced by O ligands around tetravalent titanium and the dissimilar Mn1 and Mn2 sites were investigated. Both the so-called square-planar and the octahedrally coordinated Mn sites spectroscopically contribute in a rather similar way, with little influence by the oxygen environment. Multiplet calculations suggest a small O2pTi3d charge-transfer component in the FE phase. Magnetic symmetry calculations were performed to determine probable configurations of Mn spins compatible with the acentric P42mcstructure and, in combination with the computational magnetic results in Inorg. Chem. 56, 11854 (2017), we have identified the P42mc as the most likely magnetic space group keeping invariant the unit cell below TN. This symmetry forces the sign of the magnetic coupling along the Mn columns parallel to c to reverse with respect to the coupling between neighboring columns. Below TN, the dichroic magnetization loops at the MnL3 edge confirm the absence of spontaneous ferromagnetism, although a very small field-induced spin polarization was detected in the sample.
Hits: 2011
Oxides for new-generation electronics

Magnetic and electronic properties of the ferroelectric-photovoltaic ordered double perovskite CaMnTi2O6 investigated by x-ray absorption spectroscopies

Also at ICMAB

  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    09 April 2021 100 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    06 April 2021 200 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.
  • Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System

    30 March 2021 171 hit(s) Oxides
    The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material.
  • Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

    26 March 2021 198 hit(s) Oxides
    Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared.
  • Metallic Diluted Dimerization in VO2 Tweeds

    19 March 2021 217 hit(s) Oxides
    Though first order transitions are thought to be abrupt, materials find cunning ways to smooth the jump. Here we show that VO2 chooses making beautiful tapestries at the atomic scale. To see how, and how they affect its intriguing metal-insulator transition, continue reading:

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.