SCIENTIFIC HIGHLIGHTS

Magnetocapacitance effect and magnetoelectric coupling in type-II multiferroic  HoFeWO 6
10 September 2021
We have investigated the multiferroicity and magnetoelectric (ME) coupling in HoFeWO6. With a noncentrosymmetric polar structure (space group Pna21) at room temperature, this compound shows an onset of electric polarization with an antiferromagnetic ordering at the Néel temperature (TN) of 17.8 K. The magnetic properties of the polycrystalline samples were studied by DC and AC magnetization and heat capacity measurements.
The metamagnetic behavior at low temperatures was found to be directly related to the dielectric properties of the compound. In particular, field-dependent measurements of capacitance show a magnetocapacitance (MC) effect with double-hysteresis loop behavior in direct correspondence with the magnetization. Our x-ray diffraction results show the Pna21 structure down to 8 K and suggest the absence of a structural phase transition across TN. Soft x-ray absorption spectroscopy and soft x-ray magnetic circular dichroism (XMCD) measurements at the Fe L2,3 and Ho M4,5 edges revealed the oxidation state of Fe and Ho cations to be 3+. Fe L2,3 XMCD further shows that Fe3+ cations are antiferromagnetically ordered in a noncollinear fashion with spins arranged 90 with respect to each other. Our findings show that HoFeWO6 is a type-II multiferroic exhibiting a MC effect. The observed MC effect and the change in polarization by the magnetic field, as well as their direct correspondence with magnetization, further support the strong ME coupling in this compound.
Hits: 463
Oxides for new-generation electronics

Magnetocapacitance effect and magnetoelectric coupling in type-II multiferroic HoFeWO6


Moein Adnani,*, Melissa Gooch, Liangzi Deng, Stefano Agrestini, Javier Herrero-Martin, Hung-Cheng Wu, Chung-Kai Chang, Taha Salavati-fard, Narayan Poudel, José Luis García-Muñoz, Samira Daneshmandi, Zheng Wu, Lars C. Grabow, Yen-Chung Lai, Hung-Duen Yang, Eric Pellegrin, and Ching-Wu Chu

Phys. Rev. B 103, 094110 – Published 17 March 2021
DOI: https://doi.org/10.1103/PhysRevB.103.094110

Also at ICMAB

  • Bulk photovoltaic effect in hexagonal LuMnO3 single crystals

    Information
    31 December 2021 350 hit(s) Oxides
    When illuminating a non-centrosymmetric material with light of energy higher than the bandgap, a net current appears because the electrons do not see the same electronic environment in one direction and the opposite direction, thus they hold a net momentum. This is the bulk photovoltaic effect (BPE), which depends on the light polarization.
  • Efficient spin pumping into metallic SrVO3 epitaxial films

    Information
    21 December 2021 306 hit(s) Oxides
    Spin-charge conversion requires materials with a large spin-orbit coupling, which is typically obtained in heavy metal (Pt, etc.) ions. Here we demonstrate spin pumping across interfaces between metallic SrVO3, where V is a 3d1 ion, epitaxial thin films and ferromagnetic Ni80Fe20.
  • Direct and Converse Flexoelectricity in Two-Dimensional Materials

    Information
    10 December 2021 346 hit(s) Oxides
    Building on recent developments in electronic-structure methods, we define and calculate the flexoelectric response of two-dimensional (2D) materials fully from first principles. In particular, we show that the open-circuit voltage response to a flexural deformation is a fundamental linear-response property of the crystal that can be calculated within the primitive unit cell of the flat configuration.
  • Determination of the Crystal Structures in the A-Site-Ordered YBaMn2O6 Perovskite

    Information
    03 December 2021 340 hit(s) Oxides
    We present a complete structural study of the successive phase transitions observed in the YBaMn2O6 compound with the layered ordering of cations on the perovskite A-site. We have combined synchrotron radiation X-ray powder diffraction and symmetry-adapted mode analysis to describe the distorted structures as pseudosymmetric with respect to the parent tetragonal structure.
  • High-Temperature Synthesis and Dielectric Properties of LaTaON2

    Information
    30 November 2021 375 hit(s) Oxides
    The development of new synthetic methodologies of perovskite oxynitrides is challenging but necessary for the search of new compounds and the investigation of new properties. Here, we report a new method of preparation of the perovskite LaTaON2 that has been investigated as a pigment and photocatalyst for water splitting.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.