SCIENTIFIC HIGHLIGHTS

Magnetoelectric and structural properties of Y_sub‚2sub_CoMnO†_sub6sub_:The role of antisite defects
25 August 2016

J. Blasco, J. García, G. Subías, J. Stankiewicz, J. A. Rodríguez-Velamazán, C. Ritter, J. L. García-Muñoz, and F. Fauth. Phys. Rev. B 93, 214401 – Published 1 June 2016. DOI: http://dx.doi.org/10.1103/PhysRevB.93.214401

We have carried out an investigation on the magnetoelectric properties of the presumed multiferroic Y2CoMnO6 with different degrees of Co/Mn atomic ordering. The magnetic ground state was studied by neutron diffraction, showing a collinear ferromagnetic (FM) ordering of Co and Mn moments with a small antiferromagnetic canting. No superstructure peaks from an E-type magnetic structure were detected in our measurements. Magnetic measurements reveal FM transitions with pinned magnetic domains. The degree of Co/Mn ordering affects the Curie temperature only a little, but has strong effects on the magnetic hysteresis loops, and the FM moment signal at high field increases with increasing such order. The loops display steps at critical fields whose number and extent depends on each specimen. The most ordered sample exhibits the greatest steps ascribed to the alignment of magnetic domains separated by antiphase boundaries. All samples are insulators exhibiting low dielectric loss and dielectric constants at low temperature. On warming, they show a step increase in the real dielectric permittivity accompanied by peaks in the dielectric loss typical of thermally activated hopping processes. At room temperature, the huge values of the dielectric constant reveal the presence of Maxwell-Wagner depletion layers. Pyroelectric measurements reveal a high polarization at low temperature for these compounds that increases with increasing the Co/Mn ordering. There is no correlation between the magnetic transition and the onset of pyroelectric current. No significant changes are observed in the pyroelectric effect measured under an external magnetic field, so magnetoelectric coupling is negligible. This paper identifies the pyroelectric current as thermally stimulated depolarization current ascribed to the reorientation of defect dipoles with activation energy of about 0.05 eV. Therefore, no ferroelectric transition occurs in these compounds, discarding the existence of intrinsic magnetoelectric multiferroicity.

Hits: 6613
Oxides for new-generation electronics

Magnetoelectric and structural properties of Y_sub‚2sub_CoMnO†_sub6sub_:The role of antisite defects



Also at ICMAB

  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    Information
    09 April 2021 100 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    Information
    06 April 2021 200 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.
  • Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System

    Information
    30 March 2021 171 hit(s) Oxides
    The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material.
  • Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

    Information
    26 March 2021 198 hit(s) Oxides
    Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared.
  • Metallic Diluted Dimerization in VO2 Tweeds

    Information
    19 March 2021 217 hit(s) Oxides
    Though first order transitions are thought to be abrupt, materials find cunning ways to smooth the jump. Here we show that VO2 chooses making beautiful tapestries at the atomic scale. To see how, and how they affect its intriguing metal-insulator transition, continue reading:

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.