SCIENTIFIC HIGHLIGHTS

10 July 2017

Changyong Lu,* Stefania Sandoval, Teresa Puig, Xavier Obradors, Gerard Tobias, Josep Rosa and Susagna Ricart. RSC Adv., 2017, 7, 24690. DOI: 10.1039/c7ra04080f

An in situ approach for the synthesis of Fe3O4 nanoparticles combined with a SiO2 coating process was employed to prepare Fe3O4@GNF@SiO>2 nanocapsules. Graphitised nanofibres (GNF) were initially filled with iron(III) acetylacetonate, and used as a precursor for the synthesis of ultrasmall Fe3O4 nanoparticles (4.6 nm in diameter) inside the cavities of GNF (Fe3O4@GNF) with a high density. By using a silica coating process, Fe3O4@GNF@SiO>2 nanocapsules were obtained. The presence of the silica shell not only prevented leakage of the nanoparticles from inside the GNF but also protected the magnetite nanoparticles from dissolution, even in harsh acidic conditions. Furthermore, the silica coating resulted in an increased dispersability of the nanocomposites in water. Magnetic resonance imaging (MRI) studies indicate relatively high Image ID:c7ra04080f-t1.gif relaxivities for Fe3O4@GNF nanocomposites and Fe3O4@GNF@SiO>2 nanocapsules revealing the potential application of these hybrid materials for bioimaging. Therefore, the coating of filled GNF with silica is as an excellent strategy for the protection of encapsulated payloads.

Hits: 3781
Bioactive materials for therapy and diagnosis

Novel Fe_sub3sub_O_sub4sub_@GNF@SiO_sub2sub_ nanocapsules fabricated through the combination of an _itin situit_ formation method and SiO_sub2sub_ coating process for magnetic resonance imaging



Also at ICMAB

  • Bias-Polarity-Dependent Direct and Inverted Marcus Charge Transport Affecting Rectification in a Redox-Active Molecular Junction

    Information
    23 July 2021 138 hit(s) Biomaterials
    This paper describes the transition from the normal to inverted Marcus region in solid-state tunnel junctions consisting of self-assembled monolayers of benzotetrathiafulvalene (BTTF), and how this transition determines the performance of a molecular diode. Temperature-dependent normalized differential conductance analyses indicate the participation of the HOMO (highest occupied molecular orbital) at large negative bias, which follows typical thermally activated hopping behavior associated with the normal Marcus regime.
  • Ru(II) and Ir(III) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT

    Information
    16 July 2021 204 hit(s) Biomaterials
    Four novel transition metal-carborane photosensitisers were prepared by Sonogashira cross-coupling of 1-(4-ethynylbenzyl)-2-methyl-o-carborane (A-CB) with halogenated Ru(II)- or Ir(III)-phenanthroline complexes. The resulting boron-rich complexes with one (RuCB and IrCB) or two carborane cages (RuCB2 and IrCB2) were spectroscopically characterised, and their photophysical properties investigated. RuCB displayed the most attractive photophysical properties in solution (λem 635 nm, τT 2.53 μs, and φp 20.4 %).
  • Recombinant Human Epidermal Growth Factor/Quatsome Nanoconjugates: A Robust Topical Delivery System for Complex Wound Healing

    Information
    22 June 2021 247 hit(s) Biomaterials
    A multitude of microparticles and nanoparticles is developed to improve the delivery of different small drugs and large biomolecules, which are subject to several hindering biological barriers that limit their optimal biodistribution and therapeutic effects. Here, a soft, reliable, and scalable method based on compressed CO2 is reported for obtaining nanoconjugates of recombinant human epidermal growth factor and nanovesicles called quatsomes, where the latter consists of cholesterol and cetyltrimethylammonium bromide.These nanoconjugates exhibit appropriate values of the major critical quality attributes of colloidal nanomedicines, such as controlled and narrow nanoscopic particle size distribution (which play important roles in determining their stability), drug loading, drug release, drug protection, targeting ability, and bioactivity.
  • In vivo soft tissue reinforcement with bacterial nanocellulose

    Information
    11 May 2021 377 hit(s) Biomaterials
    The use of surgical meshes to reinforce damaged internal soft tissues has been instrumental for successful hernia surgery; a highly prevalent condition affecting yearly more than 20 million patients worldwide. Intraperitoneal adhesions between meshes and viscera are one of the most threatening complications, often implying reoperation or side effects such as chronic pain and bowel perforation.
  • Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration

    Information
    13 April 2021 478 hit(s) Biomaterials
    Limbal stem cells (LSCs) are already used in cell‐based treatments for ocular surface disorders. Clinical translation of LSCs‐based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.