Skip to main content

SCIENTIFIC HIGHLIGHTS

Phase Diagram of Methylammonium/Formamidinium Lead Iodide Perovskite Solid Solutions from Temperature-Dependent Photoluminescence and Raman Spectroscopies
10 March 2020

Adrián Francisco-López, Bethan Charles, M. Isabel Alonso, Miquel Garriga, Mariano Campoy-Quiles, Mark T. Weller, Alejandro R. Goñi*. J. Phys. Chem. C 2020, 124, 6, 3448-3458

Publication Date:January 24, 2020https://doi.org/10.1021/acs.jpcc.9b10185

The complete phase diagram of organic-cation solid solutions of lead iodide perovskites [FAxMA1–xPbI3, where MA stands for methylammonium, CH3NH3, and FA for formamidinium, CH(NH2)2] with compositions x ranging from 0 to 1 in steps of 0.1 was constructed in the temperature range from 10 to 365 K by combining Raman scattering and photoluminescence (PL) measurements. The occurrence of phase transitions was inferred from both the temperature-induced changes in the optical emission energies and/or the phonon frequencies and line widths, complementing X-ray and neutron scattering literature data. For MA-rich perovskites (x ≤ 0.2), the same structural behavior as for MAPbI3 was observed with decreasing temperature: cubic Pmm → tetragonal-I I4/mcm → orthorhombic Pnma. As the FA molecule is larger and more symmetric but less polar than MA, a tetragonal crystal structure is favored at low temperatures and FA compositions x > 0.4, to the detriment of the orthorhombic phase. As a consequence, with decreasing temperature, the phase transition sequence for FA-rich compounds is cubic Pmm → tetragonal-II P4/mbm → tetragonal-III. The latter presumably belongs to the P4bm symmetry group, according to neutron scattering data. Strikingly, the isostructural (tetragonal-to-tetragonal) transformation, which occurs between 200 and 150 K, exhibits a kind of critical point for x = 0.7. For intermediate FA contents, the perovskite solid solution transforms close to 250 K directly from the cubic phase to the tetragonal-III phase. The latter is characterized by a nonmonotonic dependence of the band-gap energy on temperature. We ascribe such behavior to a substantial tilting of the PbI6 octahedra in the tetragonal-III phase. In this way, we established important links between crystal-phase stability and the electronic as well as vibrational properties of mixed organic-cation halide perovskites, which might impact the current search for more stable best-performing optoelectronic materials.

Phase Diagram of Methylammonium/Formamidinium Lead Iodide Perovskite Solid Solutions from Temperature-Dependent Photoluminescence and Raman Spectroscopies

Hits: 2070
Sustainable energy conversion & storage systems

Phase Diagram of Methylammonium/Formamidinium Lead Iodide Perovskite Solid Solutions from Temperature-Dependent Photoluminescence and Raman Spectroscopies