SCIENTIFIC HIGHLIGHTS

Photoflexoelectric effect in halide perovskites
18 May 2020

Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators.


However, the different material families on which these transduction phenomena are based complicate their integration into single devices.

Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials1,2,3, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.

Photoflexoelectric effect in halide perovskites
Longlong Shu, Shanming Ke, Linfeng Fei, Wenbin Huang, Zhiguo Wang, Jinhui Gong, Xiaoning Jiang, Li Wang, Fei Li, Shuijin Lei, Zhenggang Rao, Yangbo Zhou, Ren-Kui Zheng, Xi Yao, Yu Wang, Massimiliano Stengel & Gustau Catalan. Nature Materials (2020). 
DOI: 10.1038/s41563-020-0659-y

Photoflexoelectric effect in halide perovskites

Hits: 1246
Sustainable energy conversion & storage systems

Photoflexoelectric effect in halide perovskites



Also at ICMAB

  • Interfaces and Interphases in Ca and Mg Batteries

    Information
    14 January 2022 170 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    Information
    27 December 2021 263 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    Information
    14 December 2021 333 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.