SCIENTIFIC HIGHLIGHTS

Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SixGe1–x Alloys in Nanowires by Raman Spectroscopy
26 June 2020

Recent advances in nanowire synthesis have enabled the realization of crystal phases that in bulk are attainable only under extreme conditions, i.e., high temperature and/or high pressure.

For group IV semiconductors this means access to hexagonal-phase SixGe1–x nanostructures (with a 2H type of symmetry), which are predicted to have a direct band gap for x up to 0.5–0.6 and would allow the realization of easily processable optoelectronic devices. Exploiting the quasi-perfect lattice matching between GaAs and Ge, we synthesized hexagonal-phase GaAs-Ge and GaAs-SixGe1–x core–shell nanowires with x up to 0.59. By combining position-, polarization-, and excitation wavelength-dependent μ-Raman spectroscopy studies with first-principles calculations, we explore the full lattice dynamics of these materials. In particular, by obtaining frequency–composition calibration curves for the phonon modes, investigating the dependence of the phononic modes on the position along the nanowire, and exploiting resonant Raman conditions to unveil the coupling between lattice vibrations and electronic transitions, we lay the grounds for a deep understanding of the phononic properties of 2H-SixGe1–x nanostructured alloys and of their relationship with crystal quality, chemical composition, and electronic band structure.

Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SixGe1–x Alloys in Nanowires by Raman Spectroscopy
Diego de Matteis, Marta De Luca, Elham M. T. Fadaly, Marcel A. Verheijen, Miquel López-Suárez, Riccardo Rurali, Erik P. A. M. Bakkers and Ilaria Zardo*
ACS Nano 2020Publication Date:May 11, 2020.
DOI: 10.1021/acsnano.0c00762

Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SixGe1–x Alloys in Nanowires by Raman Spectroscopy

 
Hits: 1292
Sustainable energy conversion & storage systems

Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SixGe1–x Alloys in Nanowires by Raman Spectroscopy



Also at ICMAB

  • High-throughput screening of blade coated polymer:polymer solar cells: solvent determines achievable performance

    Information
    28 January 2022 115 hit(s) Energy
    Optimization of a new system for organic solar cells is a multiparametric analysis problem which requires substantial efforts in terms of time and resources. The strong microstructure dependent performance of polymer:olymer cells makes them particularly difficult to optimize, or to translate previous knowledge from spin coating into more scalable techniques.
  • Interfaces and Interphases in Ca and Mg Batteries

    Information
    14 January 2022 202 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    Information
    27 December 2021 287 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    Information
    14 December 2021 360 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.