Proximity-Induced Shiba States in a Molecular Junction
16 January 2018

Joshua O. Island, Rocco Gaudenzi, Joeri de Bruijckere, Enrique Burzurí, Carlos Franco, Marta Mas-Torrent, Concepció Rovira, Jaume Veciana, Teun M. Klapwijk, Ramón Aguado, and Herre S. J. van der Zant
Phys. Rev. Lett. 118, 117001. DOI:

Superconductors containing magnetic impurities exhibit intriguing phenomena derived from the competition between Cooper pairing and Kondo screening. At the heart of this competition are the Yu-Shiba-Rusinov (Shiba) states which arise from the pair breaking effects a magnetic impurity has on a superconducting host. Hybrid superconductor-molecular junctions offer unique access to these states but the added complexity in fabricating such devices has kept their exploration to a minimum. Here, we report on the successful integration of a model spin 1/2 impurity, in the form of a neutral and stable all organic radical molecule, in proximity-induced superconducting break junctions. Our measurements reveal excitations which are characteristic of a spin-induced Shiba state due to the radical’s unpaired spin strongly coupled to a superconductor. By virtue of a variable molecule-electrode coupling, we access both the singlet and doublet ground states of the hybrid system which give rise to the doublet and singlet Shiba excited states, respectively. Our results show that Shiba states are a robust feature of the interaction between a paramagnetic impurity and a proximity-induced superconductor where the excited state is mediated by correlated electron-hole (Andreev) pairs instead of Cooper pairs.


Hits: 3074
Oxides for new-generation electronics

Proximity-Induced Shiba States in a Molecular Junction

Also at ICMAB

  • Optical Plasmon Excitation in Transparent Conducting SrNbO3 and SrVO3 Thin Films

    27 July 2021 67 hit(s) Oxides
    From catalysis and flat panel displays to photovoltaics, transparent and conducting transition metal oxides are gaining momentum toward more sustainable and cost-efficient applications. Here it is shown that, without using phase-matching arrangements, bulk plasmons can be excited in continuous epitaxial films of metallic SrVO3 and SrNbO3, with plasma absorption edges at visible range, and tuned mainly by electron correlations and phonon dressing. Films can be made reflective or transparent at whish.
  • Electron–Phonon Coupling and Electron–Phonon Scattering in SrVO3

    20 July 2021 194 hit(s) Oxides
    The nature of electron-electron and electron-lattice interactions in metallic oxides is revised. The common wisdom is that the strong correlations among electrons determine their properties. Here we argue that the unavoidable coupling between free electrons and the lattice in ionic materials leads to the formation of polarons. These are carriers dressed by a lattice distortion that travel with them and largely determine the transport and some optical properties.
  • A new density-modification procedure extending the application of the recent |ρ|-based phasing algorithm to larger crystal structures

    13 July 2021 189 hit(s) Oxides
    The incorporation of the new peakness-enhancing fast Fourier transform compatible ipp procedure (ipp = inner-pixel preservation) into the recently published SM algorithm based on |ρ| [Rius (2020). Acta Cryst A76, 489–493] improves its phasing efficiency for larger crystal structures with atomic resolution data. Its effectiveness is clearly demonstrated via a collection of test crystal structures (taken from the Protein Data Bank) either starting from random phase values or by using the randomly shifted modulus function (a Patterson-type synthesis) as initial ρ estimate.
  • Current-Induced Magnetization Control in Insulating Ferrimagnetic Garnets

    29 June 2021 251 hit(s) Oxides
    The research into insulating ferrimagnetic garnets has gained enormous momentum in the past decade. This is partly due to the improvement in the techniques to grow high-quality ultrathin films with desirable properties and the advances in understanding the spin transport within the ferrimagnetic garnets and through their interfaces with conducting materials. In recent years, we have seen remarkable progress in controlling the magnetization state of ferrimagnetic garnets by electrical means in suitable heterostructures and device architectures.
  • Stabilization of the Ferroelectric Phase in Epitaxial Hf1–xZrxO2 Enabling Coexistence of Ferroelectric and Enhanced Piezoelectric Properties

    18 June 2021 386 hit(s) Oxides
    Systematic studies on polycrystalline Hf1–xZrxO2 films with varying Zr contents show that HfO2 films are paraelectric (monoclinic). If the Zr content is increased, films become ferroelectric (orthorhombic) and then antiferroelectric (tetragonal). HfO2 shows very good insulating properties and it is used in metal-oxide-semiconductor field-effect devices, while ZrO2 shows good piezoelectric properties, but it is antiferroelectric. In between, Hf0.5Zr0.5O2 shows good ferroelectric properties at the expense of poorer insulating and piezoelectric properties than HfO2 and ZrO2, respectively.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.