SCIENTIFIC HIGHLIGHTS

Quasiballistic phonon transport from first principles
29 January 2021
At short length scales phonon transport is ballistic: the thermal resistance of semiconductors and insulators is quantized and length independent. At long length scales, on the other hand, transport is diffusive and resistance arises as a result of the scattering processes experienced by phonons. In many cases of interest, however, these two transport regimes coexist. Here we propose a first-principles approach to treat quasiballistic phonon transport where diffusive and ballistic phonons receive separate theoretical treatments.
Partitioning the overall phonon population for a given transport length is performed examining the mean free paths obtained from the solution of the Boltzmann transport equation and allowing only diffusive phonons to participate in anharmonic phonon-phonon scattering processes. We present results for Si and diamond, discussing the crossover from ballistic to diffusive transport as the length scale and/or the temperature increases and compute the relative contribution of ballistic and diffusive phonons to the thermal conductance in each transport condition.
Hits: 927
Sustainable energy conversion & storage systems

Quasiballistic phonon transport from first principles


Pol Torres, Miquel Royo, Miquel López-Suárez, Junichiro Shiomi, and Riccardo Rurali

Phys. Rev. B 102, 144305 – Published 26 October 2020
DOI: https://doi.org/10.1103/PhysRevB.102.144305

Also at ICMAB

  • Interfaces and Interphases in Ca and Mg Batteries

    Information
    14 January 2022 196 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    Information
    27 December 2021 285 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    Information
    14 December 2021 355 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.