SCIENTIFIC HIGHLIGHTS

Rapid and high-resolution patterning of microstructure and composition in organic semiconductors using ‘molecular gates’
28 August 2020

Photolithography has been a major enabling tool for miniaturisation of silicon devices that underpinned the electronics revolution. Rapid, high-resolution patterning of key material characteristics would, similarly, accelerate the advent of molecular electronics and photonics.

Here we advance a versatile approach employing local diffusion of functional small-molecular compounds through a solution-processed ‘molecular gate’ interlayer. Diffusion is activated using laser light or solvent vapour jets―a process that can be finely modulated down to molecule-on-demand deposition precision with almost photolithographic resolution (<5 μm) and speeds (3 mm s–1). Examples of principal pattern types are presented including molecular conformation for integrated photonics; chain orientation for polarised security features and micro-engineered electronics; and doping with local conductivity values >3 S cm–1 for improved electronic devices. Finally, we demonstrate the unique capability for one-step patterning of multiple functionalities by spatially modulating composition in ternary blends, leading to locally tunable photoluminescence from blue to red.

Rapid and high-resolution patterning of microstructure and composition in organic semiconductors using ‘molecular gates’
Aleksandr Perevedentsev & Mariano Campoy-Quiles
Nature Communications 11, 3610 (2020).
DOI: 10.1038/s41467-020-17361-8

Rapid and high-resolution patterning of microstructure and composition in organic semiconductors using ‘molecular gates’

 
Hits: 1016
Sustainable energy conversion & storage systems

Rapid and high-resolution patterning of microstructure and composition in organic semiconductors using ‘molecular gates’



Also at ICMAB

  • Interfaces and Interphases in Ca and Mg Batteries

    Information
    14 January 2022 196 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    Information
    27 December 2021 285 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    Information
    14 December 2021 355 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.