Skip to main content


Resistive Switching in Semimetallic SrIrO3 Thin Films
24 October 2019

Víctor Fuentes, Borislav Vasić, Zorica Konstantinović, Benjamín Martínez, Lluís Balcells, Alberto Pomar*. ACS Appl. Electron. Mater.2019.

Local electrical properties, measured by conductive atomic force microscopy, of semimetallic SrIrO3 thin films are reported. The appearance of an Anderson-type metal–insulator transition (MIT) triggered by disorder and spatial localization due to film thickness reduction is analyzed as well as their influence on the resistive switching behavior. For thin enough films (below ∼3 nm) samples are insulating with hysteretic IV curves indicative of reversible resistive switching behavior between two states of clearly different resistance at room temperature. A sharp transition into a low resistance state (LRS), i.e., an abrupt increase of the current intensity, is detected above a well-defined threshold voltage indicative of localization of charge carriers. On the other hand, thicker samples exhibit a semimetallic character, and IV curves show progressive changes of the local resistance without a clearly defined threshold voltage, thus evidencing the absence of a MIT transition with a well-defined resistance jump between the different resistance states.

Resistive Switching in Semimetallic SrIrO3 Thin Films

Hits: 2130
Oxides for new-generation electronics

Resistive Switching in Semimetallic SrIrO3 Thin Films