Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes

Laura Simonelli*, Andrea Sorrentino, Carlo Marini, Nitya Ramanan, Dominique Heinis, Wojciech Olszewski, Angelo Mullaliu, Agnese Birrozzi, Nina Laszczynski, Marco Giorgetti, Stefano Passerini, Dino Tonti
J. Phys. Chem. Lett. 201910XXX3359-3368.

Lithium-rich transition-metal-oxide cathodes are among the most promising materials for next generation lithium-ion-batteries because they operate at high voltages and deliver high capacities. However, their cycle-life remains limited, and individual roles of the transition-metals are still not fully understood. Using bulk-sensitive X-ray absorption and emission spectroscopy on Li[Li0.2Ni0.16Mn0.56Co0.08]O2, we inspect the behavior of Mn, generally considered inert upon the electrochemical process. During the first charge Mn appears to be redox-active showing a partial transformation from high-spin Mn4+ to Mn3+ in both high and low spin configurations, where the latter is expected to favor reversible cycling. The Mn redox-state with cycling continues changing in opposition to the expected charge compensation and is correlated with Ni oxidation/reduction, also spatially. The findings suggest that strain induced on the Mn–O sublattice by Ni oxidation triggers Mn reduction. These results unravel the Mn role in controlling the electrochemistry of Li-rich cathodes.

Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes

Sustainable energy conversion & storage systems

  • Hits: 767

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.