Skip to main content

ICMAB Upcoming Events

"Strategies for developing flexible piezoelectric materials" by Paula Ferreira (Mon, 24 April 2023)

The Nanoparticles and Nanocomposites (NN) group kindly invites you to the following Invited Seminar on 3D graphite piezoelectric materials:

Anna May
19 April 2023

Strategies for developing flexible piezoelectric materials

by Paula Ferreira, Dep. Materials and Ceramic Eng., CICECO-Aveiro Institute of Materials, University of Aveiro, Portugal

Monday, 24 April 2023
3 PM
ICMAB - Sala d'Actes Carles Miravitlles and ONLINE. Register here to attend by Zoom. 


Nowadays, piezoelectric materials are widely employed in sensing and energy harvesting, because of their ability to transform mechanical energy into electrical stimuli. Piezoelectric composites combine mechanical flexibility and strong electromechanical coupling constants; however, the low dielectric constant of the polymer and the noncontinuity of the ceramic may hinder polarization. The low connection between the piezoelectric particles may be addressed using conductive carbon nanoparticles, but the low connection between the piezoelectric phase is left unanswered.

Innovative, highly porous 3D carbon networks may overcome these issues. In this work, it is presented an entirely original paradigm in the design and scalable fabrication of high-performance piezoelectric flexible materials enabled by hierarchic porous graphite. A 3D graphite network was filled with barium titanate and impregnated with a flexible polymer through two distinct bottom-up methods: hydrothermal and sol-gel syntheses.

With the hydrothermal method, the influence of various reaction times on the tetragonality of the particles was studied to perfect a hydrothermal (conventional and microwave-assisted) barium titanate synthesis. With the sol-gel method, the sol is infiltrated on the carbon structure, and a heat treatment capable of forming tetragonal barium titanate while not degrading the carbon template is attempted.

The structural phase was assessed using X-ray diffraction and Raman spectroscopy, while the morphology was assessed using SEM. The hydrothermally synthesized particles were used in an optimized water suspension with and without voltage to impregnate barium titanate particles into the graphite foam. The final device required a chitosan/zein polymer to include the resultant apparatus with built-in electrodes to test the device’s electrical output. PFM was used to assess the particles’ piezoelectric response following impregnation. The structure: piezoelectric output relationship was exploited in both approaches.

Acknowledgements: This work was developed within the scope of the project CICECOAveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC). Projects NANOTRONICS (IF/00300/2015); PIEZOFLEX (UTA-EXPL/NPN/0015/2019), FLEXIDEVICE (PTDC/CTM-CTM/29671/2017) are also acknowledged.


Paula Ferreira is a Coordinator Researcher at the University of Aveiro, CICECO – Aveiro Institute of Materials. She has been Principal and Co- Investigator on more than 16 research project awards and 10 projects with industry. She has a vast experience as a supervisor, with 33 MSc students (currently 3), 16 PhD students (currently 10) and 12 Post-doctoral fellows. Her publishing history counts over 148 scientific papers, with over 3223 citations (h-index 33). She participated in over 110 international conferences delivering more than 60 oral presentations. She is/was involved in 4 FCT-CNRS and 1 Pessoa bilateral cooperation agreements and 10 COST actions (5 as participant of the working groups and 5 as member of the management committee). She has been collaborating with several Portuguese Researchers and foreigner Researchers within Europe. She participated on the organizing committee of 9 International Scientific Meetings on Materials Science topics. 

The research interests involve the synthesis, structural and physical characterization, and processing of nanofunctional and nanoporous materials for microelectronics and energy applications by bottom-up approaches. She is also interested in sustainable functional bionanocomposites for flexible devices applications.

Hosted by Anna Laromaine, NN group, ICMAB-CSIC

If any of you would like a meeting with the speaker, please contact the host at This email address is being protected from spambots. You need JavaScript enabled to view it. 

Hits: 750