Ultrathin Semiconductor Superabsorbers from the Visible to the Near-Infrared
20 February 2018

Pau Molet, Juan Luis Garcia-Pomar, Cristiano Matricardi, Miquel Garriga, Maria Isabel Alonso, Agustín Mihi. Adv. Mater. 2018, 1705876.

The design of ultrathin semiconducting materials that achieve broadband absorption is a long-sought-after goal of crucial importance for optoelectronic applications. To date, attempts to tackle this problem consisted either of the use of strong—but narrowband—or broader—but moderate—light-trapping mechanisms. Here, a strategy that achieves broadband optimal absorption in arbitrarily thin semiconductor materials for all energies above their bandgap is presented. This stems from the strong interplay between Brewster modes, sustained by judiciously nanostructured thin semiconductors on metal films, and photonic crystal modes. Broadband near-unity absorption in Ge ultrathin films is demonstrated, which extends from the visible to the Ge bandgap in the near-infrared and is robust against angle of incidence variation. The strategy follows an easy and scalable fabrication route enabled by soft nanoimprinting lithography, a technique that allows seamless integration in many optoelectronic fabrication procedures.

Article featured in (18 January 2018)



Hits: 5301
Sustainable energy conversion & storage systems

Ultrathin Semiconductor Superabsorbers from the Visible to the Near-Infrared

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.