JAE Intro 2021: CSIC Introduction to Research Grants for University Students
The CSIC launches the JAE Intro 2021 call "Introduction to Research Fellowships for University Students". This call is open to University students who are willing to begin working in the field of research in Materials Science, Phyiscs, Chemistry, Biology, Biomedicine and related areas in an attractive environment in a CSIC Research Center. The fellowships are for 5 consecutive months during the academic year 2021-2021 starting in October. The application will be open from 10 March to 12 April 2021.
The ICMAB offers a total of 19 projects within this call in the field of Energy Conversion and Storage, Superconductors, Oxides and Complex Structures, Organic Electronics and Bioactive materials for therapy and diagnosis. Take a look at the complete list below.
From all the applicants, the CSIC will grant 250 fellowships, of 3,000 € each for 5 consecutive months during the academic year 2021-2022, with the possibility of an extension of 4 more months for 2.400 €. The mentored research training period will take place at the ICMAB facilities. The application will be open from 10 March to 12 April 2021
Projects offered by our researchers:
Sustainable Energy Conversion and Storage System
JAEINT21_EX_0356
The goal of this project is providing a theoretical framework aimed at understanding and controlling the manipulation of heat flux within semiconducting nanowires. The successful candidate will perform numerical simulations in order to devise realistic approaches for the engineering of a nanoscale thermal diode, the fundamental building block of phononics.
In electronics information is transferred with charge carriers, whose motion can be easily controlled with external fields. This is not the case of phononics, where phonons —the basic particles that carry heat— have no mass or charge: this is why we live in a world of electronic devices and heat is normally regarded as a source of loss. The goal of this project is reversing this viewpoint and move to a new paradigm where heat can be actively used to transfer energy, thus information, in a controllable way.
Nanowires present multiple advantages over bulk materials to achieve heat rectification, mostly due to their reduced dimensionality and to the flexibility given by the chemistry of growth to yield structures that appear to be suited for these applications. This approach allows envisaging a truly zero-power analog of electronics, as in our world heat is indeed ubiquitous and phononics circuits will effectively need no power supply. Additionally, learning how to modulate the heat flow will have also important consequences in conventional electronics —where heat dissipation at the nanoscale is a major issue— or in devising efficient thermoelectric materials —where materials with low thermal conductivities must be engineered.
The project will rely on state-of-the-art theoretical methods, such as molecular dynamics and density functional theory, that allow describing materials down to the atomic scale. Calculations will be executed on the high-power computational facilities of our group or in supercomputers of the Red Española de Supercomputación such as MareNostrum.
Contact:
JAEINT21_EX_0372
La radiación solar que llega a la superficie de la tierra en tan solo una hora es mayor que la energía consumida a lo largo del año por nuestro planeta. Una de las formas más eficientes de aprovechar esta energía solar es convertirla en electricidad. Las posibilidades de aplicación de la energía solar fotovoltaica son inmensas y abarcan desde dispositivos simples como calculadoras hasta sistemas extremadamente complejos como la alimentación para satélites artificiales.
A pesar de los continuos avances en la tecnología fotovoltaica base silicio y otros sistemas emergentes como perovskitas híbridas y semiconductores orgánicos es esencial estudiar conceptos radicalmente nuevos que permitan mitigar las limitaciones de las tecnologías actuales (estabilidad, coste, eficiencia) para acelerar su despliegue y alcanzar los objetivos a largo plazo que Europa ha marcado en un sistema de energía 100% renovable. En este proyecto estudiaremos e impulsemos el enorme potencial de óxidos ferroeléctricos como absorbentes de luz solar. Se contribuirá al gran reto de fabricar este tipo de materiales como membranas flexibles y fabricar dispositivos fotovoltaicos flexibles para ser integrados en mochilas y prendas de vestir.
El estudiante se integrará en un equipo de investigación joven y dinámico y preparará los óxidos funcionales flexibles mediante técnicas químicas de bajo coste que permiten controlar de modo muy preciso la composición y el grosor. Además, aprenderá a caracterizar su estructura, morfología, composición y funcionalidad.
Contact:
JAEINT21_EX_0577
The Enlightment group specializes on the use of soft nanoimprinting lithography techniques in combination with colloidal synthesis and self-assembly for the preparation of photonics and plasmonic architectures. The proposed training program will focus on the preparation of two dimensional plasmonic arrays yielding lattice plasmonic resonances localized in the visible and near infrared spectral regions with potential application as optical sensors or metamaterials. These resonances are generated by the long-range interactions between two physically separated plasmonic elements made possible by the array's diffraction modes.
These collective oscillations are characterized by large area delocalization, and long lifetimes. These sharp lattice plasmon resonances have been used to improve the efficiency of plasmonic detection devices, for the preparation of anti-reflection coatings, the fabrication of more efficient energy harvesting systems, and the promotion of non-linear optical phenomena such as lasing or secondary harmonic generation.
As such, the research in our group is highly interdisciplinary, seating at the crossroad between chemistry, physics and engineering. During the program, the candidate will learn to synthetize and assemble plasmonic colloids, to fabricate and replicate patterned elastomeric molds using nanoimprint lithography, and to properly characterize and interpret the optical properties of the system, including hands-on experience in UV-visible and FTIR spectroscopy, circular dichroism spectroscopy, Raman spectroscopy, and scanning and transmission electron microscopy.
Apart from the experiments, a big contribution to data interpretation is the results of theoretical work and simulation. If the student is interested, he will learn to simulate the optical profile of periodic plasmonic properties using both FDTD and GMM methods. After the initial training in the different techniques, which typically requires around 1 month, the student will be assigned his or her own research project, with the final aim of being completely independent in the production and interpretation of a scientific dataset. This goal will be achieved with the full support of the entire Enlightment research team.
In the case that the produced data set will result or be part of a publication, the name of the student will appear in the author list, and he will be involved in the preparation of the manuscript (both text and graphics).
Contact:
Oxides for New Generation Electronics
JAEINT21_EX_0428
Computers can process a large amount of data with high precision and speed. However, compared to the brain, they still cannot approach a comparable performance considering cognitive functions such as perception, recognition and memory. Neuromorphic computing devices, based on new material concepts and systems, may dramatically outperform conventional digital base technology. Creating the architectural design for brain inspired computing, with the ability to learn and adapt, requires an integrative and interdisciplinary research at different levels. The first step, is to find materials and engineering breakthroughs to build devices with the desired functionalities to mimic brain learning skills and processing capabilities.
This project will be focused on the design, fabrication and characterization of multi-functional devices, based on metallic perovskite oxides, able to implement all the basic brain-inspired functions used in a neuromorphic computer (neurons and synapsis). The main objective is to demonstrate the capability to implement biological functionality of both heterosynaptic plasticity and basic spiking neuron processes, in flexible and robust devices based on the modulation of a metallic-insulator phase transition.
Contact:
JAEINT21_EX_0812
El objetivo principal del trabajo es introducir al estudiante en el mundo del crecimiento de capas delgadas epitaxiales de óxidos multifuncionales mediante métodos químicos sol-gel. En particular se utilizará el método de deposición asistida por polímeros que es un método verde y sostenible que permite obtener capas epitaxiales de alta calidad y baja rugosidad superficial.
El estudiante realizará el crecimiento de capas delgadas epitaxiales de óxidos funcionales, lo que implica:
- La preparación de las soluciones químicas y su estabilización.
- La limpieza y preparación de los sustratos.
- Deposición de las capas mediante recubrimiento por centrifugación (drop casting) de los precursores.
- Tratamientos térmicos en atmósfera controlada para producir el crecimiento epitaxial de las capas.
El estudiante también realizará la caracterización estructural de las capas, lo que conlleva dos actividades principales:
- Caracterización estructural por rayos X, para determinar espesores, tensiones y calidad estructural.
- Caracterización superficial con un microscopio de fuerzas atómicas.
La parte experimental correspondiente a la caracterización mediante técnicas de rayos X se realizará por los servicios científico técnicos del instituto, así como otros aspectos de la caracterización de las capas que requieran la concurrencia de personal especializado.
El estudiante contará con la ayuda y supervisión de los científicos del grupo, especializados en los diferentes aspectos del trabajo, que le orientarán en la discusión e interpretación de los resultados.
Contact:
JAEINT21_EX_0831
In our laboratory, we investigate the transport properties of quantum wells based on oxides, particularly the LaAlO3/SrTiO3 interface. In these systems, the electronic transport is confined in two dimensions, and display interesting features, including two-dimensional superconductivity, phototransport and strong spin-orbit coupling. This last property makes the LaAlO3/SrTiO3 interface a promising candidate for spintronic devices, which use the spin of electrons rather than their charge. This is a promising route for new materials in data storage and manipulation for new-generation electronics. At the same time, LaAlO3/SrTiO3 quantum wells, which combine 2D-superconductivity and strong spin-orbit coupling, are candidates to host Majorana quasi-particles, of interest for quantum computation.
The objective of our research is to understand the fundamental physical properties of these quantum wells, by exploring their transport properties. Our methodologies embrace nanodevice fabrication, optical characterization (spectroscopy and microscopy), and low-temperature magneto-transport, including Hall effect as well as data analysis and modelling.
The successful candidate will have the opportunity to know how we develop nanodevice fabrication processes (based on optical and electron-beam lithography), thin film growth (sputtering, pulsed laser deposition) and exfoliation of 2D materials. The student can be introduced to low-temperature magneto-transport characterization tools, including Hall Effect and Hanle effect to determine the most relevant parameters for spin-dependent transport. The candidate will have also the option to be introduced to advance optical characterization tools, based on confocal diffraction-limited imaging (e.g., magnetic contrast to image magnetic domains), as well as angle-resolved spectroscopy (used also for nanophotonics applications, to visualize photonic dispersion curves).
The student will be supervised by Dr. Gervasi Herranz, whose activity can be reached through Researcher ID: G-2770-2014, ORCID, or Google Scholar.
Relevant references:
[1] B. Casals et al., Physical Review Letters (2016),
[2] Yu Chen et al., Phys. Rev. Lett. 124, 246804 (2020); G. Singh, et al. Nature Materials. 15, 67–72 (2019); J. Gazquez et al., Phys. Rev. Lett. 119, 106102 (2017).
Contact:
JAEINT21_EX_1405
El objetivo principal del trabajo es introducir al estudiante en el mundo del crecimiento de capas delgadas epitaxiales de óxidos multifuncionales mediante métodos químicos sol-gel. En particular se utilizará el método de deposición asistida por polímeros que es un método verde y sostenible que permite obtener capas epitaxiales de alta calidad y baja rugosidad superficial.
El estudiante realizará el crecimiento de capas delgadas epitaxiales de óxidos funcionales, lo que implica: i) La preparación de las soluciones químicas y su estabilización. ii) La limpieza y preparación de los sustratos iii) Deposición de las capas mediante recubrimiento por centrifugación (drop casting) de los precursores. iV) Tratamientos térmicos en atmósfera controlada para producir el crecimiento epitaxial de las capas.
El estudiante también realizará la caracterización estructural de las capas, lo que conlleva dos actividades principales:
- Caracterización estructural por rayos X, para determinar espesores, tensiones y calidad estructural.
- Caracterización superficial con un microscopio de fuerzas atómicas.
La parte experimental correspondiente a la caracterización mediante técnicas de rayos X se realizará por los servicios científico técnicos del instituto, así como otros aspectos de la caracterización de las capas que requieran la concurrencia de personal especializado. El estudiante contará con la ayuda y supervisión de los científicos del grupo, especializados en los diferentes aspectos del trabajo, que le orientarán en la discusión e interpretación de los resultados.
Contact:
JAEINT21_EX_0360
Efficient control of magnetization by electrical means is a central subject in spintronics. Recently, current-induced spin-orbit torques (SOTs) have emerged as a powerful tool to manipulate magnetization in spintronic devices [1]. SOTs are a collective name given to various charge-to-spin conversion mechanisms in thin-film structures characterized by strong spin-orbit coupling and broken inversion symmetry. An archetypal example is a few nanometer-thick Pt/Co bilayers, where the magnetization of Co can be reversibly switched by in-plane current-induced SOTs originating from the bulk of Pt and at the Pt/Co interface.
Recently, the focus of the SOT-based magnetization control started to shift towards magnetic insulators (MIs). In MIs, charge currents cannot propagate, but spin currents can. Therefore, efficient SOTs can be obtained by placing, e.g., an ultrathin Pt on top of an MI. We recently showed such an efficient SOT-induced magnetic manipulation in a MI, thulium iron garnet [2]. MIs are highly promising for spintronics applications. They possess many desirable properties for spintronics, such as low damping, tunable magnetization, magnetic anisotropy, etc.
This project will investigate a novel mechanism to generate efficient SOTs on MIs and control their magnitude and sign reversibly by ionic manipulation for the first time. Very recently, it has been shown that copper oxide (CuOx), a low spin-orbit material, can generate large SOTs on MIs owing to orbital angular momentum flow, a novel way of generating pure spin currents [3]. Motivated by this preliminary result, we will:
- Explore the SOTs originating from orbital angular momentum flow in engineered MI-based heterostructures.
- Dynamically manipulate the oxidation state of CuOx by electrical gating and tune the amplitude and sign of SOTs for efficient magnetization control in MIs.
At the end of this project, the student will learn about the fascinating physics behind MIs, SOTs, and many associated spintronic phenomena in a much sought-after material system in spintronics research. Moreover, the student will gain hands-on experience in state-of-the-art magneto-electrical and magneto-optical characterization setups, advanced thin film deposition techniques, and sophisticated device fabrication tools in a cleanroom facility.
[1] Manchon et al., Rev. Mod. Phys. 91, 035004 (2019)
[2] Avci et al., Nat. Mater. 16, 309 (2017); Avci et al., Nat. Nanotech. 14, 561 (2019)
[3] Ding et al., Phys. Rev. Lett. 125, 177201 (2020)
Contact:
Tuneable and Low Cost Molecular Electronics
JAEINT21_EX_0033
The work will consist on the preparation of gallium-based liquid metal nanoparticles. Liquid metals combine the flowability of liquids, and the excellent electrical and thermal conductivity of metals. These particles have attracted much attention and found appealing applications in different fields such as nanoplasmonics, drug-delivery and electronics.
We will work on the preparation of gallium-indium nanoparticles and on their chemical functionalization. The idea is to functionalize them with active molecules (electro and photo-active) and to investigate how the intrinsic properties of the particles are altered due to the shell modification.
Appropriate characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), among others will be employed to characterize the nanoparticles. Further, we aim to integrate these nanoparticles into polymeric matrices to prepare new functional conducting polymers. This is a multidisciplinary work, involving different branches of science such as chemistry, materials science and physics.
Contact:
JAEINT21_EX_0321
La fotoluminiscencia es un proceso en el cual una especie excitada electrónicamente a través de la absorción de fotones es capaz de emitir fotones de menor energía. La importancia de compuestos luminiscentes radica en la aplicación que tienen en el área de la tecnología, como en dispositivos ópticos, y la biomedicina, como el caso de marcadores celulares fluorescentes para bioimagen.
En los últimos años, se ha producido un gran avance en el desarrollo de sistemas ópticamente activos que contienen clústeres de boro icosaédricos. Estos tienen una estructura rígida 3D, aromaticidad, carácter electro-aceptor y baja toxicidad, y han demostrado mejorar las propiedades luminescentes al combinarse con grupos fluoróforos (R. Núñez, Chem. Rev. 2016, 116, 14307; J. Mater. Chem. C, 2018, 6, 11336; Biomat Sci. 2019, 7, 5324), dando lugar a materiales con excelentes propiedades ópticas, en disolución y en estado sólido, donde se produce el fenómeno de “agregation induced emission o AIE”.
El proyecto tiene como objetivo el diseño y desarrollo de nuevos sistemas luminiscentes basados en compuestos de boro que presente una alta eficiencia y estabilidad para mejorar las propiedades de emisión de luz del material para sus aplicaciones ópticas. Se espera que se puedan modular las propiedades fluorescentes a través del clúster de boro. En este proyecto el estudiante realizará las siguientes tareas:
- Síntesis y caracterización estructural de materiales moleculares híbridos, que se obtendrán mediante la unión covalente de compuestos aromáticos pi-conjugados, que fluorescentes (fluoreno, perileno, etc ) y clústeres de closo-carborano inorgánicos. El estudiante utilizará las técnicas de Schlenck, líneas de vacío, disolventes secos, para trabajar en condiciones inertes.
- Caracterización mediante técnicas espectroscópicas estándar (FT-IR, RMN 1H, 13C, 11B), espectrometría de masas, difracción de R-X, etc.
- Estudio de las propiedades foto-físicas por espectroscopias de absorción y emisión de fluorescencia, tanto en disolución como en estado sólido.
Todo ello proporcionará al estudiante una formación muy completa, tanto en técnicas de síntesis como de caracterización, y aprenderá a interpretar los resultados obtenidos. En función de dichos resultados se llevará a cabo estudios más detallados para futuras aplicaciones ópticas y publicación. El estudiante se incorporará al grupo LMI, líder en química de clústeres de boro.
Contact:
JAEINT21_EX_0683
The main objective of the project is the creation of conjugated 2D structures of curcuminoid nature, allowing electron transfer (already observed at the molecular level) and the coordination to metals (proved as well in the past), to explore in a further stay their application as sensors, taking advantage of their luminescent and electronic properties.
During the months that the student will be in our lab, his/her duties will center on the organic synthesis of a selected family of curcuminoid species, characterization of such molecular platform and creation & characterization of new 2D extended materials. The main goal is to achieve two-dimensional covalent curcuminoid-based organic species containing voids that could be used as membranes allowing to pass different types liquids loaded and capable of coordinating with residual metallic centers that could be identified and analyzed due to their changes in their conductivity and luminescent properties. For that, different approaches will be tested to generate optimal optical responsive materials that can be synthesized by straightforward chemical procedures allowing the production in high quantities of pure systems that can be used as active components in sensor devices. The student will familiarize with synthetic techniques and characterization as well as surfaces analyses and conductivity measurements.
Contact:
JAEINT21_EX_0952
Los dispositivos basados en materiales orgánicos están despertando un gran interés en aplicaciones de bajo coste y para la electrónica flexible. En el grupo de trabajo se ha desarrollado una técnica para la impresión de películas orgánicas semiconductoras que dan lugar a dispositivos con altas prestaciones eléctricas. Sin embargo, de cara a aplicaciones es imprescindible garantizar una alta reproducibilidad de los dispositivos. Para ello, es necesario tener un alto control de la cristalización del semiconductor orgánico. El proyecto que se propone aquí se basa en la preparación y caracterización de transistores orgánicos de efecto de campo controlando la cristalización del material orgánico mediante la modificación de los parámetros de deposición, tales y como, formulación, temperatura, velocidad, etc. De este modo, se prepararán dispositivos altamente reproducibles con una movilidad electrónica optimizada. Dichos dispositivos, se podrán aplicar en diferentes tipos de sensores (bio-sensores, sensores de deformación, etc.).
El trabajo que se propone es muy interdisciplinar y puede formar parte de un proyecto de fin de grado o de un máster tanto del campo de la química, física o materiales. El estudiante podrá aprender una gran variedad de técnicas que van desde la fabricación de electrodos en un Sala Blanca, la deposición de películas orgánicas por técnicas de disolución, la caracterización morfológica y estructural de dichas películas y la caracterización eléctrica de los dispositivos. Además, se integrará en un grupo dinámico e internacional que participa en proyectos europeos en el campo de la electrónica orgánica.
Contact:
Bioactive Materials for Therapy and Diagnosis
JAEINT21_EX_1035
The need to provide eco-friendly materials to reduce costs and risks associated to waste echoes in many fields as the European Commission strengthens the substitution of plastics and petroleum-based materials. In this context, raw materials of natural origin and in particular natural biopolymers like cellulose play an important role. Cellulose is a glucose homopolysaccharide, with b-(1,4) linkages. A water-insoluble biopolymer exhibiting a nanofibrous porous network structure with high strength and low density. Cellulose (C) and nanocellulose (NC)-based materials have emerged as interesting candidates to industries, governments and consumers as green, sustainable and natural materials for the fabrication of advanced complex composites.
Our group has focused on the development and biosynthesis of bacterial nanocellulose (BNC). Bacterial nanocellulose is produced by strains like K. xylinus and consists of randomly disposed nanofibers. BNC is obtained as highly pure cellulose and its properties such as high water holding capacity and porosity, tunable morphology, mechanical strength, and biocompatibility make it a unique material. As a result, BNC has attracted interest in the paper and food industry, biotechnology, photonics, and optoelectronics.
We have been able to control the shape of BNC structures at different steps, during biosynthesis or after synthesis (ex-situ). We obtained drops, films, fibers and their composites with nanoparticles.
In this work, we will exploit the BNC structures created to use them as absorbents of oils, dyes and their delivery. We foresee those materials could have an impact in water remediation or drug delivery to cite two examples from different fields.
The student will learn how to produce BNC, using different methodologies developed on the group and characterize them with a variety of physicochemical techniques. Student will work on a highly international environment and will learn how to develop their own project, from the literature search to perform the experiments in the field of nanobiotechnology. We look for a motivated student interested to work on a highly interdisciplinary project and eager to learn.
Contact:
JAEINT21_EX_1085
The student will work in the frame of a collaborative, interdisciplinary and international project devoted to the development of functionalized nanovesicles, and in particular Quatsomes (QS), for the delivery of genetic material, more specifically small RNAs. To this end, QS nanovesicles with the desired functionalities have recently been engineered by Nanomol group of ICMAB-CSIC, and are currently under further development. The work involves the synthesis, physico-chemical characterization, and the evaluation of the in vitro performance.
Contact:
JAEINT21_EX_1164
Dentro del proyecto ERC NEST, el/la estudiante se encargará de la síntesis de nanopartículas inorgánicas y/o de su funcionalización con biomoléculas (según sus conocimientos e interés), para el diagnóstico precoz y terapia dirigida del cáncer.
El/la estudiante será parte de un equipo multidisciplinar en el que participan químicos, nanotecnólogos, ingenieros y médicos (el trabajo se realiza en colaboración con el Hospital Vall d'Hebrón). El/la estudiante se familiarizará con las técnicas de preparación de nanomateriales así como en una gran variedad de técnicas de caracterización, que incluyen microscopías electrónicas (TEM, SEM), análisis termogravimétrico, difracción de rayos-X y distintas técnicas de espectroscopía.
Contact:
JAEINT21_EX_1228
The trainee will learn a methodology to synthesize polymeric nanocarriers to encapsulate drugs and will assist on developing a new method to surface functionalize the nanocarriers to improve brain delivery.
We are seeking for a student in chemistry, materials science, or nanoscience.
You can read our recent studies on the subject: PLGA protein nanocarriers with tailor-made fluorescence/MRI/PET imaging modalities (Nanoscale, 2020, 12, 4988) and MRI/Photoluminescence Dual-Modal Imaging Magnetic PLGA Nanocapsules for Theranostics (Pharmaceutics 2020, 12(1), 16)
Contact:
JAEINT21_EX_1261
The work will be framed in the interdisciplinary field of molecular nanostructured materials with optical properties for biological applications. The candidate will prepare ONPs doped with organic radicals looking for an enhancement of the Luminescence Quantum Yield, in the biological window (Red/NIR region).
The known dependence of temperature of the luminescence of such ONPs will be exploit to determine the internal temperature of cells and its possible application as nanothermometer.
The candidate will use a myriad of techniques, such as (DLS, Spectroscopic techniques such as UV, IR, XPS, optical, confocal and electron microscopies, etc..) and will be involved in the regular seminars of the Department for presentation skills.
Contact:
JAEINT21_EX_1285
Metal nanoparticles protected by organic ligands are very promising building blocks for the assembly of nanostructures. Research in this area is driven by the unusual chemical, optical, electronic or magnetic properties of these materials.
The research work will consist in the preparation of a series of water-soluble gold nanoparticles functionalized with persistent free radicals for biomedical applications mainly in the diagnosis and therapeutic area.
The study of these properties will be done by conventional characterization techniques such as FTIR, UV-Vis, TEM, NMR, SEC, etc., and more specific ones as Electron Paramagnetic Resonance (EPR), SQUID, XPS.
Contact:
JAEINT21_EX_1413
The main objective of this work is to obtain localized surface-MOF based on curcumin. Curcumin is a natural hydrophobic polyphenolic diketone with many therapeutic properties including anti-oxidative and anticancer activity. The modification of curcumin structure has allowed the achievement of new derivatives called curcuminoids (CCMoids). These modifications together with the possibility to coordinate metals have used to apply ccmoids in different fields of research such as biomedicine.
On the other hand, metal-organic frameworks (MOFs) are extended structures composed of organic ligands and metal ions or clusters, connected via coordination bonds. The structural composition of these materials enables potential formation of voids; for this reason, MOFs are considered a subclass of coordination polymers (CP) containing potential porosity. The use of MOFs in biomedical applications arose that the biocompatibility of the material had to be considered. Therefore, natural ligands used in the preparation of Biocompatible MOFs (Bio-MOFs), such as curcumin, been explored due to its medical applications. Moreover, the presence of a solid support to which the MOF can be rigidly anchored (SurMOF) creates possibilities not available for the typical MOFs powders obtained by the normal bulk synthesis schemes.
In this regard, the experimental work will imply:
- Synthesis and characterization of curcumin and curcuminoids as ligands for the Bio-Mofs
- Preparation of the Bio-MOFs in solution by the coordination of the ligands with bio-compatible metals
- To growth the Bio-MOFs on surfaces such as SiO2 wafers by the immobilization of the curcumin on them.
The student will use different techniques of characterization for the solution experiments as well as for the surface experiments such as NMR, measurements of the contact angle of the surfaces or fluorescence microscopy.
Contact:
For more information about the project topics, you can contact each one of the researchers.
Who can apply?
The call is for university students with an excellent academic record. Applicants should have an average grade equal or higher than 8.0/10. The fellowships are for university students who have passed at least 80 % of their degrees, or who will start studying an Official University Master during 2021-2022 in the fields of Materials Science and Technology, Physics, Chemistry, Biology or Biomedicine.
The objective is to initiate students in the research activity in the diverse scientific areas, and to enable them to be in contact with the ICMAB research center and its researchers.
More information
List of all the projects in the "MATTER" CSIC area for JAE Intro 2021 call.
Read here the JAE Intro 2021 call with all the details.
To apply, and for more information information about the application procedure, please refer to the CSIC website for the JAE Intro 2021 programme.
Download here the information file and the FAQS.
Please contact
Follow @JAEIntro_CSIC (Twitter) and @jaeintro_csic (Instagram) for further updates.