Skip to main content


Electrochemistry and Electroactive Materials

Led by Prof. Nieves Casañ-Pastor

ummary: The use of electrochemical methods in the preparation of new materials and  the tuning of their properties by cation and anion doping in soft synthesis conditions.  —– Applications in new concepts in energy storage, new mixed conducting phases, or electrostimulation of biological systems

The electrochemical doping, intercalation in mixed valence systems  and synthesis of oxides was initiated in the origin of the Department , led then by three researchers. Then, the specific line, supported up to three fourths of the Department budget thanks to National and European Grants, as well as Marato TV3 projects and industry contracts.

With a focus in mixed valence, mixed ionic-electronic conducting systems, the line has developed:

a) new solid state transformations and materials (AgCuO2)
b)  large changes in physical properties of materials by electrochemical reduction (polyoxometalates, vanadates), electrochemical oxygen intercalation (La2CuO4, LnCaMnO4,…), electrocatalysis in O2 evolution and CO2 reduction
c) electrodeposition (YBa2Cu3O7, IrOx, polypyrrole-PEDOT-X, hybrids IrOx-nanocarbons, Bi in Xray detectors)
d) use of electrochemistry in neural cell development
e) and bipolar electrochemistry effects inducing non contact electrochemistry and its application in energy storage and bioelectrochemistry effects.

Direct applications of those studies are found in 2D materials exfoliation, energy storage (supercapacitors with enhanced charge capacity, electrocatalysts in nanoform (POM) or coatings), and electroestimulation bioelectrodes. But also in fundamental aspects of the use of electrochemical processes to study the physicochemistry of materials.

Prof. Nieves Casañ-Pastor
Instituto de Ciencia de Materiales de Barcelona, CSIC
Campus UAB, 08193 Bellaterra, Barcelona, Spain
+34 93 5801853 ext 275
Researcher ID:
H 33
i10 87


1.- Intercalation processes that lead to notable changes in physical properties in bulk and thin layer forms lead to electrodes of various configurations that can be applied in tuning of materials properties, structure, energy storage, transport or in biological applications.

Electrochemical Oxygen intercalation at room temperature

Open framework oxides allow intercalation processes that in some cases include oxygen ions if the mobility of them is possible. That is so in most of the copper oxides that are superconducting. The control of the oxygen stoichiometry makes possible a control of their physical properties. Even at room temperature, electrochemical methods allow induction of superconductivity or big changes in magnetism by doping. ECQM studies show that the actual insertion is a superoxide/peroxide type of oxygen, that if heated is transformed in oxide.

La2-xSrxCuO4 structure in which oxygen intercalation is possible by electrochemical oxidation resulting in induction of superconducting properties with higher Tc values. The Mn equivalent behaves equally, resulting in dramatic changes in its magnetic properties

Direct RT electrochemical solid state transformation of   Ag2Cu2O3 into Ag2Cu2O4

Electrochemical solid state transformations at room temperature

The same electrochemical treatment induces structure transformations in solid state at room temperature. Ej. Ag2Cu2O3 to Ag2Cu2O4 as shown below 1 O atom “intercalated” per unit formula. Pass from a 3D structure to a 2D one at r.t. !!!!; The final phase is a peculiar case where all elements are shown to be in mixed valence states.

Other soft chemistry methods : Low T Hydrothermal inducing oxidation state effects in nanostructure

Ag2CuMnO4 represents the first delafossite with Cu/Mn ordered with a 2D structure . Ferromagnetic coupling within the layers is coupled with Antiferromagnetic exchange among layers joined by Ag ions

Ag2Cu3Cr2O8(OH)4:A new bidimensional silver-copper mixed -oxyhydroxide with in-plane ferromagnetic coupling

Dalton Transactions, 2016, DOI: 10.1039/C6DT03986C
Oxidazing conditions render layered Silver-Copper oxides . In some cases are metallic, Ag2Cu2O4, in some others , ferromagnetic, Ag2CuMnO4 or Ag2Cu3Cr2O8(OH)4. In the last two cases, a significant difference lies on the connection among Cu-O layers. In one case direct bonding through Ag orbitals allows further antiferromagnetic coupling at lower temperatires, rendering a ferro-antiferrotransition. In the other Cu-O layers behave as completely isolated from each other.

Ag2CuMnO4 represents the first delafossite with Cu/Mn ordered with a 2D structure . Ferromagnetic coupling within the layers is coupled with Antiferromagnetic exchange among layers joined by Ag ions

Electrochemically exfoliated graphene in non -surfactant aqueous media

Electrochemical exfoliation of Graphite to yield Pristine Graphene

Anodic exfoliation in presence of surfactants or without them , has been possible from Carbon in the form of graphite. The pristine graphene obtained shows no defects as compared with the reduced graphene oxide, and has yielded a series of hybrid materials with a superior charge capacity useful in supercapacitors and electrostimulation electrodes

 2.- Electrochemical reduction of Polyoxometalates, nanoclusters of W and Mo , have allowed to elucidate the influence of delocalized electrons in the magnetic properties at the nanoscale. Such study  has been the base of the new studies of the role of POM as mediators in O2 evolution, and in M-O2 cells

Magnetic Properties of Mixed-Valence Heteropoly Blues. Interactions within Complexes Containing Paramagnetic Atoms in Various Sites as Well as “Blue” Electrons Delocalized over Polytungstate Frameworks” N. Casañ-Pastor and L.C.W. Baker, J. Am. Chem. Soc., (1992), 114, 10384-94. 

Using polyoxometalates to enhance the capacity of lithium-oxygen batteries.Tom Homewooda, James T. Fritha, Nieves Casañ-Pastorb, Dino Tontib ,John R. Owena, Nuria Garcia-Araeza.Chem. Comm.  54   (69) , 2018,  9599-9602   

Electrochemically exfoliated graphene in non -surfactant aqueous media

3.- Electrodeposition methods

Reduction of metal precursors in presence of complexing agents, and further annealing has allowed the synthesis of YBa2Cu3O7 on Ag wires. As an alternative electrophoresis of suspensions of the preformed oxide also yields coatings of the oxide as shown in the figure. The opposite electrodeposition, Ag on the oxide , difficult for the rich redox chemistry of the oxide , is also possible in certain conditions

4. Electroactive materials for biological applications.

Interfase studies with neural systems and Electrostimulation

IrOx electrodeposited transparent coatings as the best substrates for neural growth in absence of electric fields and in presence of them when amorphous. Thermal evolution results in rutile structures. A channel spongy- like original oxohydroxide results: IrOx(OH)y.nH2O with a local rutile-like structure. Dynamic deposition has allowed a fourfould increase in charge capacity for this iridium oxide, and fully improved adhesion to the substrate

Electrochemically exfoliated graphene in non -surfactant aqueous media

Cell culture studies on neural cortex cells from rat embryo , show survival above controls
(collaboration with HNP Toledo and IIBB-CSIC)

Conducting polymers based on polypyrrole or PEDOT with various counterions. Best cell growth when counterion is an aminoacid.

Thin coatings and interdigitated patterns as substrates for cell growth in absence and presence of electric fields

Cells survive significantly better in aminoacid containing polymers (collaboration with IIBB-CSIC)

IrOx-nanocarbon Hybrids

IrOx-Pristine Graphene Hybrids as Electrostimulation Electrodes: Enhancement of neural repair under short term DC electric field. The electrode material changes the magnitude of the effect

Neuronal scratch response to ELECTRIC FIELD DC applications. And neurotransmitters release under field effects using IrOx-Graphene nanostructured electrodes

Large charge capacity electrodes such as IrOx-graphene  allow DC electrostimulation without secondary effects due to radical formation. In that case, neurite extension is greatly enhanced above the effects of standard electrodes. Neurotransmitter release shows an enhancement in neural function under the electric field.

5.- Bipolar electrochemistry effects in biosystems and electrochemical energy storage devices: Electrostimulation may be induced indirectly with a conducting un-connected substrate , an observation that opens up a new way of thinking on implants in biological systems

  • Controlling Nerve Growth with an Electric Field Induced Indirectly in Transparent Conductive Substrate Materials. Ann M. Rajnicek, Zhiqiang Zhao, Javier Moral-Vico, Ana M. Cruz, Colin D. McCaig and Nieves Casañ-Pastor*. Advanced HealthCare Mat.  7,  2018, 1800473. DOI: 10.1002/ adhm.201800473

6. Redox Gradient Materials and Bipolar Electrochemistry

Iridium oxide redox gradient material: Operando X Ray absorption of Ir gradient oxidation states during IrOx bipolar electrochemistry.   Laura Fuentes-Rodriguez, Llibertat Abad, Laura Simonelli, Dino Tonti, N. Casañ-Pastor*  J. Phys. Chem. C, in press , july 2021


  • PAR 273 A potentiostat (1A, 100V)
  • PAR 263 A potentiostat (100 mA, 20V)
  • Biologic VMP, VSP, potentiostats including impedance channels
  • Electrophoresis power source (1000 V, 500 mA)
  • Electrochemical Quartz Microbalance SEIKO coupled to both PAR and Biologic
  • Faraday cage
  • Scanning Elctrochemical Microscopy system including bipotentiostat and scanning system, and cell under development
  • Contact angle measurements
  • Electrodeposition and electrochemical cells of various geometries (homemade)
  • Spin coating system , up to 6000 rpm, for aqueous and some organic solvents
  • Finger ultrasound with cage and noise reduction
  • Parr bombs 10  and 30 cm height
  • Vertical 3-zone oven for high  T electrochemistry and atmosphere control



    The Vanadyl Phosphate Dihydrate, a Solid Acid: The Role of Water in VOPO4.2H2O and Its Sodium Derivatives           Nax(V(IV)xV(V)1-xO)PO4.(2-x)H2O.” N. Casan, P. Amorós, R. Ibañez, E. Martinez-Tamayo, A. Beltran-Porter and D. Beltran-Porter. J. Inclusion Phenomena, (1988), 6, 193-211.

    Ring Currents in Wholly Inorganic Heteropoly Blue Complexes. Evaluation by a Modification of Evans’s Susceptibility Method.”, M. Kozik, N. Casan-Pastor, C.F. Hammer and L.C.W. Baker,    J. Am. Chem. Soc., (1988), 110, 7697-7701

    Magnetic Properties of Mixed-Valence Heteropoly Blues. Interactions within Complexes Containing Paramagnetic Atoms in Various Sites as Well as “Blue” Electrons Delocalized over Polytungstate Frameworks” N. Casañ-Pastor and L.C.W. Baker, J. Am. Chem. Soc., (1992), 114, 10384-94

    First Ferromagnetic Interaction in a Heteropoly Complex: [Co4O14(H2O)2(PW9O27)2]10-. Experiment and Theory for Intramolecular Anisotropic Exchange Involving the Four Co(II) Atoms.” N. Casan-Pastor, J. Bas-Serra, E. Coronado, G. Pourroy and L.C.W. Baker, J. Am. Chem. Soc., (1992), 114, 10380-3.

    Electrochemical Oxidation of Lanthanum Cuprates. Superconductivity vs Thermal Treatment in La2CuO4+d. N. Casañ-Pastor, P. Gomez-Romero, A. Fuertes, J.M. Navarro, M.J. Sanchis, S. Ondoño-Castillo Physica C, (1993), 216 478-490

    Superconducting YBa2Cu3O7-d Wires by Simultaneous Electrodeposition of Y, Ba and Cu in Presence of Cyanide” S.Ondoño-Castillo, A. Fuertes, F. Perez, P. Gomez-Romero, N. Casañ-Pastor. Chem. Materials (1995), 7, 771

    “Chemical Polymerization of Polyaniline and Polypyrrole by Phosphomolybdic Acid. In situ Formation of Hybrid Organic-Inorganic Materials” P. Gómez-Romero, N. Casañ-Pastor, M. Lira-Cantú Solid State Ionics (1997) 101-103, 875

    Dramatic Change in Magnetic Properties of Manganates Ca2-xLnxMnO4 by Low Temperature Electrochemical Oxidation in Fused Nitrates” C.R. Michel, R. Amigó and N. Casañ-Pastor. Chem. Materials (1999), 11, 195-197

    Evidence of Oxygen Mobility at low temperature by Electrochemical Oxidation of oxides. A Quartz Microbalance Study” N. Casañ-Pastor, C.R. Michel, C. Zinck, E.M. Tejada-Rosales.Chem. Mater.. (2001) 13, 2118-2126

    Electrochemically induced reversible solid state reversible transformations: Electrosynthesis of Ag2Cu2Oby room temperature oxidation of Ag2Cu2OD. Muñoz-Rojas, J. Oró, J. Fraxedas, P. Gómez-Romero, J. Fraxedas, N. Casañ-Pastor Electrochem. Comm. 4, (2002) , 684-689

    “POLYOXOMETALATES: FROM INORGANIC CHEMISTRY TO MATERIALS SCIENCE” (review) N. Casañ-Pastor, P. Gómez-Romero. Frontiers in Bioscience 9, 1759-1770, 2004

    Electronic Structure of Ag2Cu2O4 and its precursor Ag2Cu2O3. Oxidized mixed valence silver and copper and internal valence fluctuations” D. Muñoz-Rojas, G. Subías, J. Fraxedas, P. Gómez-Romero, N. Casañ-Pastor, J. Phys. Chem B (2005), 109, 6193-6203

    “High Quality Silver Contacts on Ceramic Superconductors Obtained by Electrodeposition from Non aqueous Solvents” L. Angurel, J.M. Andrés, D. Muñoz- Rojas, N. Casañ-Pastor, .Supercond. Sci. Tecn.  (2005), 18, 135-141

    Ag2CuMnO4 : A new Silver Copper Oxide with Delafossite Structure.D. Muñoz-Rojas, G. Subí­as, M. Casas-Cabanas, J. Fraxedas, J. Oro-Sole, R. I. Walton, E. Garcí­a, J. Gonzalez-Calbet, B. Martí­nez, and N. Casañ-Pastor* J. Solid State Chem. (2006) 179, 3883-3892

    Electrochemically Functionalized Carbon Nanotubes and their Application to Rechargeable Lithium Batteries,M. Baibarac,* M. Lira-Cantú, J. Oró Sol, N. Casañ-Pastor and  P. Gomez-Romero* Small:, 2006 ,  21075-1082

    Transport properties and Lithium Insertion study in the p-type Semiconductors AgCuO2 and AgCu0.5Mn0.5O2” F. Sauvage, D Muñoz-Rojas, K. Poeppelmeier, N. Casañ-Pastor. J. Solid State Chemistry , 2009, 182 , 374-382.

    Neural Cell growth on Anatase TiO2 Coatings ” J. Collazos-Castro, A.M. Cruz, LL. Abad, J. Fraxedas, M. Lira-Cantú, M. Carballo-Vila, A. Pego, C. Fonseca, A. Sanjoan, N. Casañ-Pastor* Thin Solid Films , 518, (2009) 160-170

    Rutile substrata for Neural Cell Growth. Mónica Carballo-Vila, Berta Moreno-Burriel, Jose R. Jurado, Eva Chinarro, A. Perez, Nieves Casañ-Pastor, and Jorge E. Collazos-Castro*Journal of Biomedical Materials Research: Part A, 90 (2009) 94-105

    High Conductivity in hydrothermally-grown AgCuO2 single crystals verified using FIB-deposited nanocontacts. D. Muñoz-Rojas, R. Cordoba, A. Fern¡ndez-Pacheco, J. M. De Teresa, G. Sauthier, J. Fraxedas, R. I. Walton, N. Casañ-PastorInorganic Chemistry, 49, 2010, 10977

    The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes M. Alanyologlu, J. Oró, N. Casañ-Pastor. Carbon, 50, 2012 , 142. MOST CITED

    Iridium Oxohydroxide, a Significant Member in the Family of Iridium Oxides. Stoichiometry, Characterization, and Implications in Bioelectrodes.A. M. Cruz, Ll. Abad, N. M. Carretero, J. Moral-Vico, J. Fraxedas, P. Lozano, G. Subi­as, V. Padial, M. Carballo, J. E. Collazos-Castro, and N. Casañ-Pastor*;J. Phys. Chem. C , 116 , 2012, 5155-€“5168

    Iridium Oxide sensor for biomedical applications. Case urea-urease in real urine samplesElisabet Prats-Alfonso; Llibertat Abad; Nieves Casan-Pastor; Javier Gonzalo-Ruiz; Eva Baldrich Biosensors and Bioelectronics, 39, 2013, 163-169 

    Graded conducting titanium-iridium oxide coatings for bioelectrodes in neural systemsA.M. Cruz, N. Casañ-Pastor Thin Solid Films5342013,  316-324

    Dynamic electrodeposition of aminoacid-polypyrrole on aminoacid-PEDOT substrates: Conducting polymer bilayers as electrodes in neural systems.J. Moral-Vico, N. M. Carretero, E. Perez, C. Suñol, M. Lichtenstein,  N. Casañ-Pastor  , Electrochim. Acta  111 (2013),  250-260

    Nanocomposites of iridium oxide and conducting polymers as electroactive phases in biological  media.J. Moral-Vico,, S. Sanchez-Redondo, E. Perez, M. Lichtenstein, C. Suñol,  N. Casañ-Pastor. Acta Biomaterialia, 10 (2014) 2177-218

    IrOx-Carbon Nanotubes Hybrid:A Nanostructured Material for Electrodes with Increased Charge Capacity in Neural systems.  Nina M. Carretero, Mathieu P. Lichtenstein, Estela Perez, Laura Cabana, Cristina Suñol,Nieves Casañ-Pastor*, Acta Biomaterialia, 10, 2014, 4548-4558  .

    Enhanced charge capacity in  Iridium Oxide-Graphene Oxide Hybrids.  N. M. Carretero , M. P. Lichtenstein , E. Perez , S. Sandoval , G. Tobias , C. Suñol , N. Casan-Pastor * Electrochimica Acta, 157 (2015) 369-377

    Coatings of Nanostructured Pristine Graphene-IrOx Hybrids for Neural Electrodes: Layered Stacking and the role of non-oxygenated Graphene.E. Perez, M. P. Lichtenstein, C. Suñol , N. Casan-Pastor*. Materials Science & Engineering C, 55, 2015, 218-226

    A comparative study on surface treatments in the immobilization improvement of hexahistidine-tagged protein on the indium tin oxide surface. M.B. Ismail, N. Casañ-Pastor, E. Pérez, A. Soltani, A. Othmane   J. Nanomed. Nanotechnol. 7 (372), 2016, 1-6.

    Short term electrostimulation enhancing neural repair in vitro using large charge capacity nanostructured electrodes. M.P. Lichtenstein, E. Pérez, L. Ballesteros, C. Suñol, N. Casañ-Pastor* Applied Materials Today  6, 2017, 29-43 

    Ag2Cu3Cr2O8(OH)4:A new bidimensional silver-copper mixed -oxyhydroxide with in-plane ferromagnetic coupling. Nieves Casañ-Pastor*, Jordi Rius, Oriol Vallcorba, Inma Peral, Judith Oró-Solé, Daniel S. Cook, Richard I. Walton, Alberto García, David Muñoz-Rojas. Dalton Transactions,  46, 2017, 1093-1104, DOI: 10.1039/C6DT03986C

    Controlling Nerve Growth with an Electric Field Induced Indirectly in Transparent Conductive Substrate Materials. Ann M. Rajnicek, Zhiqiang Zhao, Javier Moral-Vico, Ana M. Cruz, Colin D. McCaig and Nieves Casañ-Pastor*. Advanced HealthCare Mat.  Accepted June 2018.   DOI: 10.1002/ adhm.20180047

    Microstructure and electrical transport in electrodeposited Bi films. J.Moral-Vico, N.Casañ-Pastor, A.Camón, C.Pobes, R.M.Jáudenes, P.Strichovanec and L.Fàbrega. J. Electroanal. Chem. , 832, (2019), 40-47

    Using polyoxometalates to enhance the capacity of lithium-oxygen batteries. Tom Homewood, James T. Frith, Nieves Casañ-Pastor, Dino Tonti ,John R. Owen, Nuria Garcia-Araez.  Chem. Comm.  54   (69) , 2018,  9599-9602   .

    Electric Field Gradients and Bipolar Electrochemistry effects on Neural Growth. A finite element study on inmersed electroactive conducting electrode materials. Ll. Abad, A. Rajnicek, N. Casañ-Pastor*. Electrochimica Acta , 317 (2019) 102-111 .  

    Charge delocalization, oxidation states and silver mobility in the mixed silver-copper oxide AgCuO2. Abel Carreras, Sergio Conejeros, Agustín Camón, Alberto García, Nieves Casañ-Pastor*, Pere Alemany*, Enric Canadell*. Inorg Chem, 58, 2019,  7026-7035.

    Nitro-graphene oxide in Iridium Oxide hybrids: Electrochemical modulation of N-graphene redox states and Charge capacities. EPérez, N. M. Carretero, S. Sandoval, A. Fuertes, G. Tobias, N. Casañ-Pastor*. Materials Chemistry Frontiers, 4, 2020, 1421 – 143

    Nanocarbon-Iridium Oxide Nanostructured Hybrids as Large Charge Capacity Electrostimulation Electrodes for Neural   Repair. N.  Casañ-Pastor. Molecules 2021, 26, 4236..  Special issue: Electrochemical Applications of Carbon-Based Nanomaterials 

    Iridium oxide redox gradient material: Operando X Ray absorption of Ir gradient oxidation states during IrOx bipolar electrochemistry. Laura Fuentes-Rodriguez, Llibertat Abad, Laura Simonelli, Dino Tonti, N. Casañ-Pastor*. J. Phys. Chem. C2021 , 125 (30), 16629-16642.  DOI:  10.1021/acs.jpcc.1c05012.          

    Induced dipoles and Possible modulation of Wireless effects in implanted electrodes. Effects of implanting insulated electrodes on an animal test to screen antidepressant activity. Perez-Caballero, H. Carceller, J. Nacher, V. Teruel-Marti, E. Pujades , N. Casañ-Pastor*, E. Berrocoso* J. Clinical Medicine, 2021, 10, 4003. Special issue: Advances in Neurostimulation: Understanding of the Mechanisms and Clinical Applications

    Dramatic drop in cell resistance through induced dipoles and bipolar electrochemistry. Fuentes-Rodríguez, Ll. Abad, E. Pujades, P. Gómez-Romero, D. Tonti, N. Casañ-Pastor*.J. Electrochem. Soc., 2022 , 169, 016508.

    Nanostructured Electroactive Materials with Large Charge Capacity: Direct Field Electrostimulation through Connected and Non-connected Electrodes. Ann M. Rajnicek, Cristina Suñol and Nieves Casan-Pastor*. in BOOK  “Engineering Biomaterials for Neural Applications. Targeting traumatic Brain and spinal cord Injuries”.     Ed. Lopez-Dolado, Serrano MC, Springer Nature. In press. 11/04/2022 release. Online ISBN978-3-030-81400-7. Print ISBN978-3-030-81399-4


    Pedro Gomez-Romero, Monica Lira, Nieves Casañ-Pastor. “Reversible electrochemical cells using hybrid organic-inorganic electrodes formed by organic conducting polymers and active inorganic species” Patente N. 9500599, OEPM 1995,

    P. Gomez-Romero, E. Tejada- Rosales, D. Muñoz-Rojas, N. Casañ-Pastor, G. Mestl, H. J. Wohl. Preparacion de nuevos catalizadores basados en Oxidos de cobre y plata y su uso en catalizadores de oxidacion. Patente N. 20020 309 OEP  8 junio 2002.




      “Obtencion de hilos Superconductores de Alta Tc por Electrodeposicion de los Metales Constituyentes y por Electroforesis del Oxido Preformado” Investigador Principal: N. Casañ-Pastor. Referencia: 92/1592
      “Recubrimientos Superconductores sobre Substratos Metalicos. Obtencion de Hilos Superconductores de Alta Tc por Electrodeposicion y Electroforesis”
      Junio 1993-Diciembre 1996
      Investigador Principal: N. Casañ-Pastor. Referencia: 93/2331
    • Proyecto CEE Human Capital and Mobility (Network):
      “Thin Film Inorganic Electrochemical Systems”
      Investigador principal: N. Casañ-Pastor. Coordinador: Donald M. Schleich (ISITEM, Nantes)
      Referencia: CHRX-CT94-0588
    • Proyecto CICYT: “Tratamiento y puesta en forma de materiales electroceramicos y aislantes mediante métodos electroquímicos y de fusión zonal” Investigador Principal: N. Casañ-Pastor. Colaboración con Germán de la Fuente (ICMA, Zaragoza).  1996-1999. Referencia: MAT96-1057-c02-01
    • Contrato CSIC- Carburos Metálicos: ” CO2 Electrochemical Reduction: The first Step in industrial CO2 Fixation and the Role of Mixed Valent Oxides” Investigador Principal: N. Casañ Pastor. : 1997
    • Contrato CSIC- REE: “Obtención de depositos superconductores de Bi2Sr2CaCu2Ox y YBa2Cu3O7 por electrodeposicion y electroforesis”
      IP: Nieves Casañ Pastor
      abril 1997-junio 1998
    • Proyecto PGC  : PB98-0491 : “Obtencion de nuevos Óxidos con dopajes controlados mediante oxidación electroquí­mica y electrocristalización a bajas temperaturas”
      I.P. Nieves Casañ Pastor
       diciembre 1999-diciembre 2002
    • Contrato CSIC- Carburos Metalicos:  “Low-T Mixed Conducting Oxides as Possible Electrodes for Alkaline Fuel Cells”
      I.P. Nieves Casañ Pastor.
      sep 2001- sept 2002
    • CICYT MAT 2005-07683-C02-01 “Materiales Electroactivos  Funcionales: Nuevos Materiales, Energía y Bioactividad”
      Coordinadora e IP del subproyecto 1. : Nieves Casañ-Pastor
      Fechas: 15 octubre 2005 -14 octubre 2008 .
    • NEST Program VI PM European Community: Adventure passed evaluation 6/2005: “DEVELOPMENT OF A BIOELECTROCHEMICAL DEVICE FOR CNS REPAIR” IP. CSIC Nieves Casañ PAstor, coordinated by J. Collazos-Castro (HN Paraplejicos) STREP-Adventure  VI Programa Marco Union EuropeaDEVELOPMENT OF A BIOELECTROCHEMICAL DEVICE FOR CNS REPAIR” ”
      IP. CSIC Nieves Casañ Pastor, REf. FP6-2004-NEST-C1  028473 (ref. CSIC NEST/STREP/0746.
      15 nov 2006- 14 nov 2009
    • Proyecto Intramural CSIC PIF 2006 (ref PIF06-021): NEUROMAT:
      “Desarrollo de substratos electroactivos para el crecimiento y supervivencia neuronal”
      Coordinador : Dra. Nieves Casañ-Pastor. Participantes: Inst. Ciencia de Materiales de Barcelona, Dra. Nieves Casañ-Pastor Inst. Microelectronica Barcelona, Centro Nacional Microelectronica CNM, CSIC, Dra. Cecilia Jimenez-Jorquera. Hospital Nacional de Paraplejicos , SESCAM, Dr. Jorge E. Collazos Castro Instituto de Cerámica y Vidrio, CSIC, Prof. Jose Ramón Jurado. 1 enero 2007 – 31 dic 2008
    • Acción Complementaria MEC  MAT 2007-29316-E, 14 abril 2007-14 abril 2008
      Investigadora principal: Dra. Nieves Casañ Pastor
    • Proyecto PN. MAT 2008-06643-C02-01
      “Interfases de materiales Electroactivos nano y microestructurados con sistemas biologicos”
      IP y coordinadora : Nieves Casañ Pastor.  1 enero 2009- 31 diciembre 2011 .
    • Proyecto MARATO TV3 2011. Nano-structured Electroactive Materials for Electrodes in Central Nervous System (CNS) stimulation and repair.  1/2012-06/2015. IP y coordinadora Nieves Casañ Pastor.
    • Proyecto Intramural CSIC Ref. 201560E053. Electrodos biocompatibles nanoestructurados, electrodeposición 3D  de hí­bridos de IrOx y carbón y extensión a otros metales. Supercondensadores en bio y energí­a.

    • Proyecto Marie-Curie EU:  Coordinator of MSCA-IF-EF-SE 101026162 ELECTRA : REdox fLow batteriEs powered by multi-eleCtron processes maTeRiAls.”   IP CSIC Nieves Casañ-Pastor, with Cristina Flox. . 2022-24