Battery Materials Design Essentials
21 May 2021
The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
Indeed, knowledge of the structure and dynamics of matter at different length scales has enabled replacing serendipity and Edisonian trial-and-error approaches with intention and rational materials engineering, and this has accelerated progresses in a wide range of technologies which are now crucial for our daily lives but could not even be imagined a century ago.
One such example is Li-ion batteries, which was granted the Nobel Prize in Chemistry 2019 to J.B. Goodenough, M.S. Whittingham, and A. Yoshino as it enabled, in the words of the Nobel Committee, “the creation of a rechargeable world”.(1) This technology is now expanding from the portable electronics realm to transportation(2) and even stationary grid applications.
Given the crucial relevance of all these fields of use, it seems evident that as a society we should not rely on a unique technology, neither from a sustainability nor from a geopolitical and social perspective. Despite Li-ion batteries being in themselves not a single technology but a family of technologies for which several materials have been developed ad hoc,(3) the diversification of concepts/chemistries is currently a target for battery researchers worldwide, both in academia and industry (see ref (4) and references in that issue). While the quest for ever increasing energy densities has for long been the main driving force behind progress in battery technology, additional factors are now considered such as cost and sustainability. The latter comprises not only low environmental footprint in terms of toxicity and energy/water consumption but also the avoidance of critical materials.
The aim of this viewpoint is to present in a nutshell a summary of practical considerations in research for new battery materials and concepts targeting nonspecialists in the field. Indeed, cross-fertilization from other research domains is, as always in science, precious, but a number of aspects need to be taken into account when entering battery research to make the best of experiments/developments and avoid biased experiment interpretations.
Hits: 899
Sustainable energy conversion & storage systems

Battery Materials Design Essentials

M. Rosa Palacin*

Acc. Mater. Res. 2021, XXXX, XXX, XXX-XXX
Publication Date:April 13, 2021

Also at ICMAB

  • Interfaces and Interphases in Ca and Mg Batteries

    14 January 2022 134 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    27 December 2021 253 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    14 December 2021 317 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.