Bio and soft-imprinting lithography on bacterial cellulose films
15 October 2021
Bacterial cellulose (BC) is a biocompatible polysaccharide produced by bacteria currently used in packaging, cosmetics, or health care. A highly attractive feature of BC is the possibility of patterning the BC pellicle during its biosynthesis, a concept coined as bio-lithography.
BC-patterned films have demonstrated improved properties for cellular-guided growth, implant protection, or wound dressing. However, aspects such as the diversity and size of the features patterned, how those features withstand postprocessing steps, or if large areas can be patterned remain unanswered. Gathering knowledge on these characteristics could extend the use of patterned cellulose-based materials in emerging fields such as transient devices, nanogenerators, or microfluidics. Here, we show that bio-lithographed BC films present good-quality micropatterned features for various motifs (wells, pillars, and channels) in a wide range of sizes (from 200 to 5 μm) and areas as large as 70 cm2. Besides, we have studied the fidelity of the motifs and the fiber organization for wet, supercritical, and oven-dried films. When wells and pillars were patterned, the x and y dimensions were faithfully replicated in the wet and dried samples, but only wet and supercritically dried films afforded mold accuracy in the z-direction. In addition, x/z ratio should be carefully considered for obtaining self-standing pillars. Finally, we compared bio-lithography and soft-imprint lithography. In the latter case, fiber alignment was not observed and the depth of the resulting features dramatically decreased; however, this technique allowed us to produce submicron features that remain after the rewetting of the BC films.
Hits: 317
Bioactive materials for therapy and diagnosis

Bio and soft-imprinting lithography on bacterial cellulose films

S. Roig-Sanchez, C. Fernández-Sánchez, A. Laromaine, A. Roig

Materials Today Chemistry, Volume 21, 2021, 100535, ISSN 2468-5194,

Also at ICMAB

  • Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids

    18 January 2022 230 hit(s) Biomaterials
    Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications.
  • Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering

    17 December 2021 257 hit(s) Biomaterials
    Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment.
  • Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke

    07 December 2021 405 hit(s) Biomaterials
    The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging.
  • Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis (dicarbollide) Uptake in Glioma Stem Cells

    09 November 2021 329 hit(s) Biomaterials
    The anionic cobaltabis (dicarbollide) [3,3′-Co(1,2-C2B9H11)2]−, [o-COSAN]−, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]− could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells.   BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.