SCIENTIFIC HIGHLIGHTS

Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures
08 June 2021
Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
The laser processing technology is well extended at the industrial sector for the versatile and high throughput modification of a wide range of materials. In this work, a method based on laser processing is presented for the fabrication of hybrid electrodes composed of graphene nanowalls (GNWs) coated with different transition-metal oxide nanostructures for electrochemical capacitor (EC) applications. GNW/stainless steel electrodes grown by plasma enhanced chemical vapor deposition were decorated with metal oxide nanostructures by means of their laser surface processing while immersed in aqueous organometallic solutions. The pseudocapacitive nature of the laser-induced crystallized oxide materials prompted an increase of the GNW electrodes' capacitance by 3 orders of magnitude, up to ca. 28 F/cm3 at 10 mV/s, at both the positive and negative voltages. Finally, asymmetric aqueous and solid-state ECs revealed excellent stability upon tens of thousands of charge-discharge cycles.
Hits: 672
Sustainable energy conversion & storage systems

Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures


Yasmín Esqueda-Barrón, Angel Pérez Del Pino, Pablo García Lebière, Arevik Musheghyan-Avetisyan, Enric Bertran-Serra, Enikö György, Constantin Logofatu

ACS Appl Mater Interfaces. 21;13(15):17957-17970.
Doi: 10.1021/acsami.1c00951. 2021 
Erratum in: ACS Appl Mater Interfaces. 2021 May 20;: PMID: 33843185.

Also at ICMAB

  • Interfaces and Interphases in Ca and Mg Batteries

    Information
    14 January 2022 134 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    Information
    27 December 2021 253 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    Information
    14 December 2021 317 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.