Engineering Plasmonic Colloidal Meta-Molecules for Tunable Photonic Supercrystals
17 September 2021
Ordered arrays of metal nanoparticles offer new opportunities to engineer light–matter interactions through the hybridization of Rayleigh anomalies and localized surface plasmons. The generated surface lattice resonances exhibit much higher quality factors compared to those observed in isolated metal nanostructures. Template-induced colloidal self-assembly has already shown a great potential for the scalable fabrication of 2D plasmonic meta-molecule arrays, but the experimental challenge of controlling optical losses within the repeating units has so far prevented this approach to compete with more standard fabrication methods in the production of high-quality factor resonances.
In this manuscript, the optical properties of plasmonic arrays are investigated by varying the lattice parameter (between 200 and 600 nm) as well as the diameter of the gold colloidal building-blocks (between 11 ± 1 and 98 ± 6 nm). It is systematically studied how the internal architecture of the repeating gold-nanoparticle meta-molecules influences the optical response of the plasmonic supercrystals. Combining both experimental measurements and simulations, it is demonstrated how, reducing the size of the gold nanoparticles it is possible to switch from strong near-field plasmonic architectures to high-quality factors (>60) for lattice plasmon resonances located in the visible spectral range.
Hits: 576
Sustainable energy conversion & storage systems

Engineering Plasmonic Colloidal Meta-Molecules for Tunable Photonic Supercrystals

Pau Molet, Nicolás Passarelli, Luis A. Pérez, Leonardo Scarabelli, Agustín Mihi

Adv. Optical Mater. 2021, 2100761. 

Also at ICMAB

  • Interfaces and Interphases in Ca and Mg Batteries

    14 January 2022 182 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    27 December 2021 274 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    14 December 2021 340 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.