Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface
27 December 2021
Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
However, the mechanism of interfacial electron–phonon coupling and thermal transport at metal/insulator interfaces is not well understood.Here, the observation of a substantial enhancement of the interfacial thermal resistance and the important role of surface charges at the metal/ferroelectric interface in an Al/BiFeO3 membrane are reported. By applying uniaxial strain, the interfacial thermal resistance can be varied substantially (up to an order of magnitude), which is attributed to the renormalized interfacial electron–phonon coupling caused by the charge redistribution at the interface due to the polarization rotation. These results imply that surface charges at a metal/insulator interface can substantially enhance the interfacial electron–phonon-mediated thermal coupling, providing a new route to optimize the thermal transport performance in next-generation nanodevices, power electronics, and thermal logic devices.
Hits: 289
Sustainable energy conversion & storage systems

Giant Thermal Transport Tuning at a Metal/Ferroelectric Interface

Yipeng Zang, Chen Di, Zhiming Geng, Xuejun Yan, Dianxiang Ji, Ningchong Zheng, Xingyu Jiang, Hanyu Fu, Jianjun Wang, Wei Guo, Haoying Sun, Lu Han, Yunlei Zhou, Zhengbin Gu, Desheng Kong, Hugo Aramberri, Claudio Cazorla, Jorge Íñiguez, Riccardo Rurali, Longqing Chen, Jian Zhou, Di Wu, Minghui Lu, Yuefeng Nie, Yanfeng Chen, Xiaoqing Pan

Adv. Mater. 2021, 2105778. 
DOI: 10.1002/adma.202105778

Also at ICMAB

  • High-throughput screening of blade coated polymer:polymer solar cells: solvent determines achievable performance

    28 January 2022 122 hit(s) Energy
    Optimization of a new system for organic solar cells is a multiparametric analysis problem which requires substantial efforts in terms of time and resources. The strong microstructure dependent performance of polymer:olymer cells makes them particularly difficult to optimize, or to translate previous knowledge from spin coating into more scalable techniques.
  • Interfaces and Interphases in Ca and Mg Batteries

    14 January 2022 202 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Storing energy with molecular photoisomers

    14 December 2021 361 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.