Laser fabrication of hybrid electrodes composed of nanocarbons mixed with cerium and manganese oxides for supercapacitive energy storage
05 March 2021
Novel composite materials are being investigated for improving the energy storage performance of electrochemical capacitors. For this goal, synergistic effects via the combination of diverse types of materials are crucial. In this work, electrodes composed of reduced graphene oxide, multiwall carbon nanotubes, as well as cerium and manganese oxides were fabricated through reactive inverse matrix-assisted pulsed laser evaporation (RIMAPLE).
UV-pulsed laser irradiation of frozen aqueous dispersions containing graphene oxide sheets, carbon nanotubes, and ceria nanoentities, besides manganese acetate precursor, led to the simultaneous chemical transformation and co-deposition of hybrid electrodes onto flexible metallic substrates via photothermal and photochemical processes. Thorough morphological and compositional studies of the electrodes demonstrated the laser-induced reduction of graphene oxide, besides the crystallization of a mixture of cerium and manganese oxide nanostructures decorating the carbon nanoentities during the deposition process. Electrochemical analyses revealed a remarkable improvement of performance with the combination of electrochemical double layer in the porous nanocarbon framework with pseudocapacitance from the oxide nanostructures, obtaining excellent volumetric capacitances of up to 140 F cm−3 at 10 mV s−1 with the combination of all four materials. The attained results are the best ones yet published regarding RIMAPLE of hybrid nanocarbon-based electrodes with micrometric thickness. Finally, symmetric electrochemical capacitors were fabricated using aqueous electrolyte, revealing excellent stability upon tens of thousands of charge–discharge cycles.
Hits: 772
Sustainable energy conversion & storage systems

Laser fabrication of hybrid electrodes composed of nanocarbons mixed with cerium and manganese oxides for supercapacitive energy storage

Pablo García Lebière, * Ángel Pérez del Pino, Guillem Domènech Domingo, Constantin Logofatu, Immaculada Martínez-Rovira, Ibraheem Yousef and Enikö György

J. Mater. Chem. A, 2021, Advance Article

Also at ICMAB

  • Interfaces and Interphases in Ca and Mg Batteries

    14 January 2022 169 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    27 December 2021 263 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    14 December 2021 333 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.