SCIENTIFIC HIGHLIGHTS

Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration
13 April 2021
Limbal stem cells (LSCs) are already used in cell‐based treatments for ocular surface disorders. Clinical translation of LSCs‐based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation.
Bacterial nanocellulose (BNC) is an appealing, yet unexplored, candidate for this application because of its biocompatibility, animal‐free origin and mechanical stability. Here, BNC as a vehicle for human embryonic stem cells‐derived LSC (hESC‐LSC) are investigated. To enhance cell‐biomaterial interactions, a plasma activation followed by a Collagen IV and Laminin coating of the BNC substrates is implemented. This surface functionalization with human extracellular matrix proteins greatly improved the attachment and survival of hESC‐LSC without compromising the flexible, robust and semi‐transparent nature of the BNC. The surface characteristics of the BNC substrates are described and a preliminary ex vivo test in simulated transplantation scenarios is provided. Importantly, it is shown that hESC‐LSC retain their self‐renewal and stemness characteristics up to 21 days on BNC substrates. These results open the door for future research on hESC‐LSC/BNC constructs to treat severe ocular surface pathologies.
Hits: 568
Bioactive materials for therapy and diagnosis

Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration


Irene Anton‐Sales, Laura Koivusalo, Heli Skottman, Anna Laromaine, Anna Roig

Small 2021, 2003937
DOI: https://doi.org/10.1002/smll.202003937

Also at ICMAB

  • Nanocarbon-Iridium Oxide Nanostructured Hybrids as Large Charge Capacity Electrostimulation Electrodes for Neural Repair

    Information
    07 September 2021 202 hit(s) Biomaterials
    Nanostructuring nanocarbons with IrOx yields to material coatings with large charge capacities for neural electrostimulation, and large reproducibility in time, that carbons do not exhibit. This work shows the contributions of carbon and the different nanostructures present, as well as the impact of functionalizing graphene with oxygen and nitrogen, and the effects of including conducting polymers within the hybrid materials. Different mammalian neural growth models differentiate the roles of the substrate material in absence and in presence of applied electric fields and address optimal electrodes for the future clinical applications.
  • Iridium Oxide Redox Gradient Material: Operando X‑ray Absorption of Ir Gradient Oxidation States during IrOx Bipolar Electrochemistry

    Information
    24 August 2021 242 hit(s) Energy
    Electrodeposited iridium oxide (K1.7IrO0.8 (OH)2.2 × 1.8 H2O; also called IrOx) is among the best substrates for neural growth, decreasing impedance and stimulating cell growth, when used as a connected electrode. Without direct contact, it has been proven to stimulate neurons through a bipolar mechanism related to the conducting character of the material in the presence of remote electric fields.
  • Bias-Polarity-Dependent Direct and Inverted Marcus Charge Transport Affecting Rectification in a Redox-Active Molecular Junction

    Information
    23 July 2021 318 hit(s) Biomaterials
    This paper describes the transition from the normal to inverted Marcus region in solid-state tunnel junctions consisting of self-assembled monolayers of benzotetrathiafulvalene (BTTF), and how this transition determines the performance of a molecular diode. Temperature-dependent normalized differential conductance analyses indicate the participation of the HOMO (highest occupied molecular orbital) at large negative bias, which follows typical thermally activated hopping behavior associated with the normal Marcus regime.
  • Ru(II) and Ir(III) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT

    Information
    16 July 2021 409 hit(s) Biomaterials
    Four novel transition metal-carborane photosensitisers were prepared by Sonogashira cross-coupling of 1-(4-ethynylbenzyl)-2-methyl-o-carborane (A-CB) with halogenated Ru(II)- or Ir(III)-phenanthroline complexes. The resulting boron-rich complexes with one (RuCB and IrCB) or two carborane cages (RuCB2 and IrCB2) were spectroscopically characterised, and their photophysical properties investigated. RuCB displayed the most attractive photophysical properties in solution (λem 635 nm, τT 2.53 μs, and φp 20.4 %).
  • Recombinant Human Epidermal Growth Factor/Quatsome Nanoconjugates: A Robust Topical Delivery System for Complex Wound Healing

    Information
    22 June 2021 378 hit(s) Biomaterials
    A multitude of microparticles and nanoparticles is developed to improve the delivery of different small drugs and large biomolecules, which are subject to several hindering biological barriers that limit their optimal biodistribution and therapeutic effects. Here, a soft, reliable, and scalable method based on compressed CO2 is reported for obtaining nanoconjugates of recombinant human epidermal growth factor and nanovesicles called quatsomes, where the latter consists of cholesterol and cetyltrimethylammonium bromide.These nanoconjugates exhibit appropriate values of the major critical quality attributes of colloidal nanomedicines, such as controlled and narrow nanoscopic particle size distribution (which play important roles in determining their stability), drug loading, drug release, drug protection, targeting ability, and bioactivity.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.