SCIENTIFIC HIGHLIGHTS

Mechanically Tunable Lattice-Plasmon Resonances by Templated Self-Assembled Superlattices for Multi-Wavelength Surface-Enhanced Raman Spectroscopy
03 August 2021
Lattice plasmons, i.e., diffractively coupled localized surface plasmon resonances, occur in long-range ordered plasmonic nanostructures such as 1D and 2D periodic lattices. Such far-field coupled resonances can be employed for ultrasensitive surface-enhanced Raman spectroscopy (SERS), provided they are spectrally matched to the excitation wavelength.
The spectral positions of lattice plasmon modes critically depend on the lattice period and uniformity, owing to their pronounced sensitivity to structural disorder. We report the fabrication of superlattices by templated self-assembly of gold nanoparticles on a flexible support, with tunable lattice-plasmon resonances by means of macroscopic strain. We demonstrate that the highest SERS performance is achieved by matching the lattice plasmon mode to the excitation wavelength, by post-assembly fine-tuning of long-range structural parameters. Both asymmetric and symmetric lattice deformations can be used to adapt a single lattice structure to both red-shifted and blue-shifted excitation lines, as exemplified by lattice expansion and contraction, respectively. This proof-of-principle study represents a basis for alternative designs of adaptive functional nanostructures with mechanically tunable lattice resonances using strain as a macroscopic control parameter.
Hits: 706
Sustainable energy conversion & storage systems

Mechanically Tunable Lattice-Plasmon Resonances by Templated Self-Assembled Superlattices for Multi-Wavelength Surface-Enhanced Raman Spectroscopy


Mathias CharconnetChristian Kuttner, Javier PlouJuan Luis García-PomarAgustín MihiLuis M. Liz-MarzánAndreas Seifert

Small Methods, 7 July 2021
DOI: 10.1002/smtd.202100453

Also at ICMAB

  • Interfaces and Interphases in Ca and Mg Batteries

    Information
    14 January 2022 169 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    Information
    27 December 2021 263 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.
  • Storing energy with molecular photoisomers

    Information
    14 December 2021 333 hit(s) Energy
    The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.