SCIENTIFIC HIGHLIGHTS

Stability of radical-functionalized gold surfaces by self-assembly and on-surface chemistry
Tuneable and low cost molecular electronics

Stability of radical-functionalized gold surfaces by self-assembly and on-surface chemistry


Tobias Junghoefer, Ewa Malgorzata Nowik-Boltyk, J. Alejandro de Sousa, Erika Giangrisostomi, Ruslan Ovsyannikov, Thomas Chassé, Jaume Veciana, Marta Mas-Torrent, Concepció Rovira, Núria Crivillers and Maria Benedetta Casu *

Chem. Sci., 2020,11, 9162-9172
DOI: https://doi.org/10.1039/D0SC03399E
12 January 2021
We have investigated the radical functionalization of gold surfaces with a derivative of the perchlorotriphenylmethyl (PTM) radical using two methods: by chemisorption from the radical solution and by on-surface chemical derivation from a precursor.
We have investigated the obtained self-assembled monolayers by photon-energy dependent X-ray photoelectron spectroscopy. Our results show that the molecules were successfully anchored on the surfaces. We have used a robust method that can be applied to a variety of materials to assess the stability of the functionalized interface. The monolayers are characterized by air and X-ray beam stability unprecedented for films of organic radicals. Over very long X-ray beam exposure we observed a dynamic nature of the radical–Au complex. The results clearly indicate that (mono)layers of PTM radical derivatives have the necessary stability to withstand device applications.
Hits: 141

Also at ICMAB


INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.