SCIENTIFIC HIGHLIGHTS

Stable anchoring of bacteria-based protein nanoparticles for surface enhanced cell guidance
21 August 2020

In tissue engineering, biological, physical, and chemical inputs have to be combined to properly mimic cellular environments and successfully build artificial tissues which can be designed to fulfill different biomedical needs such as the shortage of organ donors or the development of in vitro disease models for drug testing.

Inclusion body-like protein nanoparticles (pNPs) can simultaneously provide such physical and biochemical stimuli to cells when attached to surfaces. However, this attachment has only been made by physisorption. To provide a stable anchoring, a covalent binding of lactic acid bacteria (LAB) produced pNPs, which lack the innate pyrogenic impurities of Gram-negative bacteria like Escherichia coli, is presented. The reported micropatterns feature a robust nanoscale topography with an unprecedented mechanical stability. In addition, they are denser and more capable of influencing cell morphology and orientation. The increased stability and the absence of pyrogenic impurities represent a step forward towards the translation of this material to a clinical setting.

 Stable anchoring of bacteria-based protein nanoparticles for surface enhanced cell guidance
Marc Martínez-Miguel, Adriana R. Kyvik, Lena M. Ernst, Albert Martínez-Moreno, Olivia Cano-Garrido, Elena Garcia-Fruitós, Esther Vazquez, Nora Ventosa, Judith Guasch,* Jaume Veciana, Antonio Villaverde and Imma Ratera *. 
J. Mater. Chem. B, 2020,8, 5080-5088. 
DOI: 10.1039/D0TB00702A

Stable anchoring of bacteria-based protein nanoparticles for surface enhanced cell guidance

 

 
Hits: 463
Bioactive materials for therapy and diagnosis

Stable anchoring of bacteria-based protein nanoparticles for surface enhanced cell guidance



Also at ICMAB


INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.