SCIENTIFIC HIGHLIGHTS

Storing energy with molecular photoisomers
14 December 2021
The global energy demand continues to grow both due to the increasing population and wealth. As one of the potential solutions, renewable energy resources can relieve the pressure on conventional energy sources. However, due to fluctuations in both supply and demand, they need to be complemented with load-leveling technologies.
Since the sun is considered one of the most abundant renewable energy resources, solar energy storage solutions based on battery technologies or power-to-X technologies have attracted increasing attention. Such technologies offer emission-free energy on demand; they also require, in most cases, rare and depletable raw materials. In this context, it is stimulating to imagine alternative technologies that directly capture and store the energy from the sun, based entirely on earth-abundant raw materials, specifically organic molecules.
Some molecular photoswitches can absorb and transform sunlight into chemical energy, available for later release in the form of heat without any emission. We define their common properties as an innovative molecular system that can store solar energy into chemical bond strain and later release it on demand. Such photoisomers are referred to as molecular solar thermal energy storage systems (MOST), also known as solar thermal fuels (STF). In this review, we introduce the functional principles and criteria of a general MOST system, then introduce to a broad audience three key candidates and show the efforts made so far to achieve recent advances in results. Finally, we discuss the challenges and future opportunities that these dynamic molecular systems offer.
Hits: 363
Sustainable energy conversion & storage systems

Storing energy with molecular photoisomers


Zhihang Wang, Paul Erhart, Tao Li, Zhao-Yang Zhang, Diego Sampedro, Zhiyu Hu, Hermann A. Wegner, Olaf Brummel, Jörg Libuda, Mogens Brøndsted Nielsen, Kasper Moth-Poulsen

Joule, Published: November 22, 2021
DOI:https://doi.org/10.1016/j.joule.2021.11.001

Also at ICMAB

  • High-throughput screening of blade coated polymer:polymer solar cells: solvent determines achievable performance

    Information
    28 January 2022 123 hit(s) Energy
    Optimization of a new system for organic solar cells is a multiparametric analysis problem which requires substantial efforts in terms of time and resources. The strong microstructure dependent performance of polymer:olymer cells makes them particularly difficult to optimize, or to translate previous knowledge from spin coating into more scalable techniques.
  • Interfaces and Interphases in Ca and Mg Batteries

    Information
    14 January 2022 202 hit(s) Energy
    The development of high energy density battery technologies based on divalent metals as the negative electrode is very appealing. Ca and Mg are especially interesting choices due to their combination of low standard reduction potential and natural abundance.
  • Giant Thermal Transport Tuning at a Metal / Ferroelectric Interface

    Information
    27 December 2021 289 hit(s) Energy
    Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.