The Third Dimension of Ferroelectric Domain Walls
30 September 2022
Ferroelectric domain walls are quasi-2D systems that show great promise for the development of nonvolatile memory, memristor technology, and electronic components with ultrasmall feature size. Electric fields, for example, can change the domain wall orientation relative to the spontaneous polarization and switch between resistive and conductive states, controlling the electrical current.
Being embedded in a 3D material, however, the domain walls are not perfectly flat and can form networks, which leads to complex physical structures. In this work, the importance of the nanoscale structure for the emergent transport properties is demonstrated, studying electronic conduction in the 3D network of neutral and charged domain walls in ErMnO3. By combining tomographic microscopy techniques and finite element modeling, the contribution of domain walls within the bulk is clarified and the significance of curvature effects for the local conduction is shown down to the nanoscale. The findings provide insights into the propagation of electrical currents in domain wall networks, reveal additional degrees of freedom for their control, and provide quantitative guidelines for the design of domain-wall-based technology.
Hits: 441
Oxides for new-generation electronics

The Third Dimension of Ferroelectric Domain Walls

Erik D. Roede, Konstantin Shapovalov, Thomas J. Moran, Aleksander B. Mosberg, Zewu Yan, Edith Bourret, Andres Cano, Bryan D. Huey, Antonius T. J. van Helvoort, Dennis Meier

Adv. Mater. 202234, 2202614. 

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.