Unified View of Magnetic Nanoparticle Separation under Magnetophoresis
11 August 2020

The migration process of magnetic nanoparticles and colloids in solution under the influence of magnetic field gradients, which is also known as magnetophoresis, is an essential step in the separation technology used in various biomedical and engineering applications.

Many works have demonstrated that in specific situations, separation can be performed easily with the weak magnetic field gradients created by permanent magnets, a process known as low-gradient magnetic separation (LGMS). Due to the level of complexity involved, it is not possible to understand the observed kinetics of LGMS within the classical view of magnetophoresis. Our experimental and theoretical investigations in the last years unravelled the existence of two novel physical effects that speed up the magnetophoresis kinetics and explain the observed feasibility of LGMS. Those two effects are (i) cooperative magnetophoresis (due to the cooperative motion of strongly interacting particles) and (ii) magnetophoresis-induced convection (fluid dynamics instability originating from inhomogeneous magnetic gradients). In this feature article, we present a unified view of magnetophoresis based on the extensive research done on these effects. We present the physical basis of each effect and also propose a classification of magnetophoresis into four distinct regimes. This classification is based on the range of values of two dimensionless quantities, namely, aggregation parameter N* and magnetic Grashof number Grm, which include all of the dependency of LGMS on various physical parameters (such as particle properties, thermodynamic parameters, fluid properties, and magnetic field properties). This analysis provides a holistic view of the classification of transport mechanisms in LGMS, which could be particularly useful in the design of magnetic separators for engineering applications.

This article was highlighted as the Editor's Choice in ACS Publications.  

Unified View of Magnetic Nanoparticle Separation under Magnetophoresis
Sim Siong Leong, Zainal Ahmad, Siew Chun Low, Juan Camacho, Jordi Faraudo*, and JitKang Lim*. 
Langmuir  2020Publication Date:June 18, 2020. 

Unified View of Magnetic Nanoparticle Separation under Magnetophoresis


Hits: 1115
Bioactive materials for therapy and diagnosis

Unified View of Magnetic Nanoparticle Separation under Magnetophoresis

Also at ICMAB

  • Cobaltabis(dicarbollide) ([o-COSAN]−) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma

    25 January 2022 287 hit(s) Biomaterials
    Purpose: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8′-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. Methods: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. Results: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies.
  • Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids

    18 January 2022 284 hit(s) Biomaterials
    Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications.
  • Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering

    17 December 2021 284 hit(s) Biomaterials
    Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment.
  • Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke

    07 December 2021 433 hit(s) Biomaterials
    The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging.
  • Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis (dicarbollide) Uptake in Glioma Stem Cells

    09 November 2021 343 hit(s) Biomaterials
    The anionic cobaltabis (dicarbollide) [3,3′-Co(1,2-C2B9H11)2]−, [o-COSAN]−, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]− could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells.   BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.