SCIENTIFIC HIGHLIGHTS

X-ray Detectors With Ultrahigh Sensitivity Employing High Performance Transistors Based on a Fully Organic Small Molecule Semiconductor/Polymer Blend Active Layer
22 July 2022
The implementation of organic semiconductor (OSC) materials in X-ray detectors provides exciting new opportunities for developing a new generation of biocompatible devices with high potential for the fabrication of sensitive and low-cost X-ray imaging systems. Here, the fabrication of high performance organic field-effect transistors (OFETs) based on blends of 1,4,8,11-tetramethyl-6,13-triethylsilylethynyl pentacene (TMTES) with polystyrene is reported. The films are printed employing a low cost and high-throughput deposition technique. The devices exhibit excellent electrical characteristics with a high mobility and low density of hole traps, which is ascribed to the favorable herringbone packing (different from most pentacene derivatives) and the vertical phase separation in the blend films.
As a consequence, an exceptional high sensitivity of (4.10 ± 0.05) × 1010 µC Gy–1cm–3 for X-ray detection is achieved, which is the highest reported so far for a direct X-ray detector based on a tissue equivalent full organic active layer, and is higher than most perovskite film-based X-ray detectors. As a proof of concept to demonstrate the high potential of these devices, an X-ray image with sub-millimeter pixel size is recorded employing a 4-pixel array. This work highlights the potential exploitation of high performance OFETs for future innovative large-area and highly sensitive X-ray detectors for medical dosimetry and diagnostic applications.
Hits: 742
Tuneable and low cost molecular electronics

X-ray Detectors With Ultrahigh Sensitivity Employing High Performance Transistors Based on a Fully Organic Small Molecule Semiconductor/Polymer Blend Active Layer


Adrián Tamayo, Ilaria Fratelli, Andrea Ciavatti, Carme Martínez-Domingo, Paolo Branchini, Elisabetta Colantoni, Stefania De Rosa, Luca Tortora, Adriano Contillo, Raul Santiago, Stefan T. Bromley, Beatrice Fraboni, Marta Mas-Torrent, Laura Basiricò

Adv. Electron. Mater. 2022, 2200293. 
DOI: https://doi.org/10.1002/aelm.202200293

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.